Учимся легко

Учимся легко

» » Современные формы исследования операций. Реферат: Задача исследования операций

Современные формы исследования операций. Реферат: Задача исследования операций

1. Предмет и задачи исследования операций в экономике. Основные понятия теории исследования операций.

Предмет исследования операций - системы организационного управления или организации, которые состоят из большого числа взаимодействующих между собой подразделений не всегда согласующихся между собой и могут быть противоположны.

Цель исследования операций - количественное обоснование принимаемых решений по управлению организациями

Решение, которое оказывается наиболее выгодным для всей организации называется оптимальным, а решение наиболее выгодное одному или нескольким подразделениям будет субоптимальным.

Исследование операций - наука, занимающаяся разработкой и практическим применением методов наиболее оптимального управления организационными системами.

Операцией называется всякое мероприятие (система действий), объединенное единым замыслом и направленное к достижению какой-то цели.

Цель исследования операций - предварительное количественное обоснование оптимальных решений.

Всякий определенный выбор зависящих от нас параметров называется решением. Оптимальным называются решения, по тем или другим признакам предпочтительные перед другими.

Параметры, совокупность которых образует решение, называются элементами решения.

Множеством допустимых решений называются заданные условия, которые фиксированы и не могут быть нарушены.

Показатель эффективности - количественная мера, позволяющая сравнивать разные решения по эффективности.

2. Понятие о сетевом планировании и управлении. Сетевая модель процесса и ее элементы.

Метод работы с сетевыми графиками - сетевое планирование - базируется на теории графов. В переводе с греческого граф (grafpho - пишу) представляет систему точек, некоторые из них соединены линиями - дугами (или ребрами). Это топологическая (математическая) модель взаимодействующих систем. С помощью графов можно решать не только задачи сетевого планирования, но и другие задачи. Метод сетевого планирования применяется при планировании проведения комплекса взаимосвязанных работ. Он позволяет наглядно представить организационно-технологическую последовательность выполнения работ и установить взаимосвязь между ними. Кроме этого, он позволяет обеспечить координацию операций различной степени сложности и выявить операции, от которых зависит продолжительность всей работы (т.е. организационного мероприятия), а также сосредоточить внимание на своевременном выполнении каждой операции.

Основой сетевого планирования и управления является сетевая модель (СМ), в которой моделируется совокупность взаимосвязанных работ и событий, отображающих процесс достижения определенной цели. Она может быть представлена в виде графика или таблицы.

Основные понятия сетевой модели:

Событие, работа, путь.

Событиями называются результаты выполнения одной или нескольких работ. Они не имеют протяженности во времени.

Путь — это цепочка следующих друг за другом работ, соединяющих начальную и конечную вершины.

Продолжительность пути определяется суммой продолжительностей составляющих его работ.

3. Построение и упорядочивание сетевого графика.

В качестве модели, отражающей технологические и организационные взаимосвязи процесса производства строительно-монтажных работ в системах сетевого планирования и управления (СПУ), используется сетевая модель.

Сетевой моделью называется графическое изображение процессов, выполнение которых приводит к достижению одной или нескольких поставленных целей, с указанием установленных взаимосвязей между этими процессами. Сетевой график представляет собой сетевую модель с расчетными временными параметрами.

Структура сетевого графика, определяющая взаимную зависимость работ и событий, называется его топологией.

Работа - это производственный процесс, требующий затрат времени, труда и материальных ресурсов, который при его выполнении приводит к достижению определенных результатов.

Зависимость (фиктивная работа), не требующая затрат времени изображается пунктирной стрелкой. Фиктивная работа используется в сетевом графике для отражения связей между событиями и работами.

В сетевом графике применяются временные, стоимостные и другие характеристики работ.

Продолжительной работы - время выполнения данной работы в рабочих днях или других единицах времени, одинаковых для всех работ сетевого графика. Продолжительность работ может быть как определенной (детерминированной), так и случайной величиной, задаваемой законом ее распределения.

Стоимость работы - это прямые затраты, необходимые для ее выполнения, зависящие от длительности и условий выполнения этой работы.

Ресурсы характеризуются потребностью в физических единицах, необходимых для выполнения данной работы.

Качество, надежность и другие показатели работ служат дополнительными характеристиками работ.

Событие - это факт окончания одной или нескольких работ, необходимый и достаточный для начала одной или нескольких последующих работ. Каждому событию присваивается номер, называемый кодом. Каждая работа определяется двумя событиями: кодом начального события, обозначаемого i и кодом конечного события, обозначаемого буквой j.

События, не имеющие предшествующих работ, называются начальными; события, не имеющие последующих - конечными.

1 Направление построения сети может иметь различный характер. Сетевой график может строиться от начального события к завершающему и от завершающего к исходному (начальному), а также от любого из событий к исходному или конечному.

2 При построении сети решаются вопросы:

Какие работы (работу) необходимо выполнить, чтобы начать данную работу;

Какие работы целесообразно выполнять параллельно с данной работой;

3 Первоначальный сетевой график строится без учета продолжительности работ, составляющих сеть.

4 Форма графика должна быть простой и зрительно легко воспринимаемой.

5 Между двумя событиями может заключаться только одна работа. При строительстве зданий и сооружений работы могут выполняться последовательно, параллельно или одновременно, часть последовательно, а часть параллельно, в результате чего между отдельными работами складываются различные зависимости.

Нумерация (кодирование) событий производится после окончания построения сети, начиная от исходного события до конечного.

4. Критический путь сетевого графика. Резервы времени. Ранние и поздние сроки событий и работ в сетевом графике.

В сетевом графике между начальным и конечным событиями может быть несколько путей. Путь, имеющий наибольшую продолжительность, называется критическим. Критический путь определяет общую продолжительность работ. Все остальные пути имеют меньшую продолжительность, и поэтому в них выполняемое работы имеют резервы времени.

Критический путь обозначается на сетевом графике утолщенными или двойными линиями (стрелками).

Особое значение при составлении сетевого графика имеют два понятия:

Раннее начало работы - срок, раньше которого нельзя начать данную работу, не нарушив принятой технологической последовательности. Он определяется наиболее долгим путем от исходного события до начала данной работы

Позднее окончание работы - самый поздний срок окончания работы, при котором не увеличивается общая продолжительность работ. Он определяется самым коротким путем от данного события до завершения всех работ.

Раннее окончание - срок, раньше которого нельзя закончить данную работу. Он равен раннему началу плюс продолжительность данной работы

Позднее начало - срок, позже которого нельзя начинать данную работу, не увеличив общую продолжительность строительства. Он равен позднему окончанию минус продолжительность данной работы.

Если событие является окончанием лишь одной работы (т.е. в него направлена только одна стрелка), то раннее окончание этой работы совпадает с ранним началом последующей.

Общий (полный) резерв - это наибольшее время, на которое можно задержать выполнение данной работы, не увеличивая общую продолжительность работ. Он определяется разностью между поздним и ранним началом (или поздним и ранним окончанием - что то же самое).

Частный (свободный) резерв - это наибольшее время, на которое можно задержать выполнение данной работы, не меняя раннего начала последующей. Этот резерв возможен только тогда, когда в событие входят две или более работы (зависимости), т.е. на него направлены две или более стрелки (сплошные или пунктирные). Тогда лишь у одной из этих работ раннее окончание будет совпадать с ранним началом последующей работы, для остальных же это будут разные значения. Эта разница у каждой работы и будет ее частным резервом.

5. Динамическое программирование. Принцип оптимальности и управления Беллмана.

Динамическое программирование - один из наиболее мощных методов оптимизации. С задачами принятия рациональных решений, выбора наилучших вариантов, оптимального управления имеют дело специалисты разного профиля. Среди методов оптимизации динамическое программирование занимает особое положение. Этот метод исключительно привлекателен благодаря простоте и ясности своего основного принципа - принципа оптимальности. Сфера приложения принципа оптимальности чрезвычайно широка, круг задач, к которым он может быть применен, до настоящего времени еще полностью не очерчен. Динамическое программирование с самого начала выступает как средство практического решения задач оптимизации.

Кроме принципа оптимальности, основного приема исследования, большую роль в аппарате динамического программирования играет идея погружения конкретной задачи оптимизации в семейство аналогичных задач. Третьей его особенностью, выделяющей его среди других методов оптимизации, является форма конечного результата. Применение принципа оптимальности и принципа погружения в многошаговых, дискретных процессах приводят к рекуррентно-функцио-нальным уравнениям относительно оптимального значения критерия качества. Полученные уравнения позволяют последовательно выписать оптимальные управления для исходной задачи. Выигрыш здесь состоит в том, что задача вычисления управления для всего процесса разбивается на ряд более простых задач вычисления управления для отдельных этапов процесса.

Главным недостатком метода является, говоря словами Беллмана, «проклятие размерности» - его сложность катастрофически возрастает с увеличением размерности задачи.

6. Задача о распределении средств между предприятиями.

Можно сказать, что процедурапостроения оптимального управления методом динамического программирования распадается на две стадии:предварительную и окончательную. На предварительной стадии для каждого шага определяется УОУ зависящее от состояния системы (достигнутого в результате предыдущих шагов), и условно оптимальный выигрыш на всех оставшихся шагах, начиная с данного, также зависящий от состояния. На окончательной стадии определяется (безусловное) оптимальное управление для каждого шага. Предварительная (условная) оптимизация производится по шагам в обратном порядке: от последнего шага к первому; окончательная (безусловная) оптимизация — также по шагам, но в естественном порядке: от первого шага к последнему. Из двух стадий оптимизации несравненно более важной и трудоемкой является первая. После окончания первой стадии выполнение второй трудности не представляет: остается только "прочесть" рекомендации, уже заготовленные на первой стадии.

7. Постановка задачи линейного программирования.

Линейное программирование -- популярный инструмент решения экономических задач, которые характиризуются наличием одного критерия (например, максимизировать доход от производства продукции за счет оптимального выбора производственной программы, или, например, минимизировать транспортные расходы и пр.). Для экономических задач характерны ресурсные ограничения (материальные и / или финансовые). Они записываются в виде системы неравенств, иногда в виде равенств.

С точки зрения прогнозирования допустимых интервалов цен (или объемов продаж) в рамках обобщенного непараметрического метода, применение линейного программирования означает:

Критерием является MAX цена очередного продукта из интересуемой группы f.

Управляемыми переменными величинами являются цены всех продуктов из группы f.

Ограничениями в нашей задаче прогнозирования с использованием обобщенного непараметрического метода, являются:

a) система неравенств (ограничения рациональности поведения потребителя) (см. 4.2. Прогнозирование в рамках обобщенного непараметрического метода);

б) требование неотрицательности управляемых переменных (в нашей задаче прогнозирования мы потребуем, чтобы цены на продукты из группы f не опустились ниже 80% от значений цен в последней временной точке) ;

в) бюджетное ограничение в виде равенства - требование постоянства суммы затрат на покупку продуктов из группы f (с учетом 15% инфляции, например).

8. Графический метод решения задач линейного программирования.

Графический метод основан на геометрической интерпретации задачи линейного программирования и применяется в основном при решении задач двумерного пространства и только некоторых задач трехмерного простран6тва, так как довольно трудно построить многогранник решений, который образуется в результате пересечения полупространств. Задачу пространства размерности больше трех изобразить графически вообще невозможно.

Пусть задача линейного программирования задана в двумерном пространстве, т. е. ограничения содержат две переменные.

Найти минимальное значение функции

(2.1) Z = С1х1+С2х2

a11x1 + a22x2 b1

(2.2)a21x1 + a22x2 b2

aM1x1 + aM2x2 bM

(2.3) х1 0, х2 0

Допустим, что система (2.2) при условии (2.3) совместна и ее многоугольник решений ограничен. Каждое из неравенств (2.2) и (2.3), как отмечалось выше, определяет полуплоскость с граничными прямыми: ai1x1 + ai2x2 + ai3x3 = bi,(i = 1, 2, ..., n), х1=0, х2=0. Линейная функция (2.1) при фиксированных значениях Z является уравнением прямой линии: С1х1 + С2х2 = const. Построим многоугольник решений системы ограничений (2.2) и график линейной функции (2.1) при Z = 0 (рис. 2.1). Тогда поставленной задаче линейного прграммирования можно дать следующую интерпретацию. Найти точку многоугольника решений, в которой прямая С1х1 + С2х2 = const опорная и функция Z при этом достигает минимума.

Значения Z = С1х1 + С2х2 возрастают в направлении вектора N =(С1, С2), поэтому прямую Z = 0 передвигаем параллельно самой себе в направлении вектора Х. Из рис. 2.1 следует, что прямая дважды становится опорной по отношению к многоугольнику решений (в точках А и С), причем минимальное значение принимает в точке А. Координаты точки А (х1, х2) находим, решая систему уравнений прямых АВ и АЕ.

Если многоугольник решений представляет собой неограниченную многоугольную область, то возможны два случая.

Случай 1. Прямая С1х1 + С2х2 = const, передвигаясь в направлении вектора N или противоположно ему, постоянно пересекает многоугольник решений и ни в какой точке не является опорной к нему. В этом случае линейная функция не ограничена на многоугольнике решений как сверху, так и снизу (рис. 2.2).

Случай 2. Прямая, пере-двигаясь, все же становится опорной относительно многоу-гольника решений (рис. 2.2, а - 2.2, в). Тогда в зави-симости от вида области ли-нейная функция может быть ограниченной сверху и неограниченной снизу (рис. 2.2, а), ограниченной снизу и неограниченной сверху (рис. 2.2, б), либо ограниченной как снизу, так и сверху (рис. 2.2, в).

9. Симплекс- метод.

Симплекс-метод является основным в линейном программировании. Решение задачи начинается с рассмотрений одной из вершин многогранника условий. Если исследуемая вершина не соответствует максимуму (минимуму), то переходят к соседней, увеличивая значение функции цели при решении задачи на максимум и уменьшая при решении задачи на минимум. Таким образом, переход от одной вершины к другой улучшает значение функции цели. Так как число вершин многогранника ограничено, то за конечное число шагов гарантируется нахождение оптимального значения или установление того факта, что задача неразрешима.

Этот метод является универсальным, применимым к любой задаче линейного программирования в канонической форме. Система ограничений здесь - система линейных уравнений, в которой количество неизвестных больше количества уравнений. Если ранг системы равен r, то мы можем выбрать r неизвестных, которые выразим через остальные неизвестные. Для определенности предположим, что выбраны первые, идущие подряд, неизвестные X1, X2, ..., Xr. Тогда наша система уравнений может быть записана как

Симплекс-метод основан на теореме, которая называется фундаментальной теоремой симплекс-метода. Среди оптимальных планов задачи линейного программирования в канонической форме обязательно есть опорное решение ее системы ограничений. Если оптимальный план задачи единственен, то он совпадает с некоторым опорным решением. Различных опорных решений системы ограничений конечное число. Поэтому решение задачи в канонической форме можно было бы искать перебором опорных решений и выбором среди них того, для которого значение F самое большое. Но, во-первых, все опорные решения неизвестны и их нужно находить, a, во-вторых, в реальных задачах этих решений очень много и прямой перебор вряд ли возможен. Симплекс-метод представляет собой некоторую процедуру направленного перебора опорных решений. Исходя из некоторого, найденного заранее опорного решения по определенному алгоритму симплекс-метода мы подсчитываем новое опорное решение, на котором значение целевой функции F не меньше, чем на старом. После ряда шагов мы приходим к опорному решению, которое является оптимальным планом.

10. Постановка транспортной задачи. Методы определения опорных планов.

Имеется m пунктов отправления («поставщиков») и n пунктов потребления («потребителей») некоторого одинакового товара. Для каждого пункта определены:

ai - объемы производства i -го поставщика, i = 1, …, m;

вj - спрос j-го потребителя, j= 1,…,n;

сij - стоимость перевозки одной единицы продукции из пункта Ai- i-го поставщика, в пункт Вj - j-го потребителя.

Для наглядности данные удобно представлять в виде таблицы, которую называют таблицей стоимостей перевозок.

Требуется найти план перевозок, при котором бы полностью удовлетворялся спрос всех потребителей, при этом хватало бы запасов поставщиков и суммарные транспортные расходы были бы минимальными.

Под планом перевозок понимают объем перевозок, т.е. количество товара, которое необходимо перевезти от i-го поставщика к j-му потребителю. Для построения математической модели задачи необходимо ввести m·n штук переменных хij, i= 1,…, n, j= 1, …, m, каждая переменная хij обозначает объем перевозок из пункта Ai в пункт Вj. Набор переменных X = {xij} и будет планом, который необходимо найти, исходя из постановки задачи.

Это условие для решения закрытых и открытых транспортных задач (ЗТЗ).

Очевидно, что для разрешимости задачи 1 необходимо, чтобы суммарный спрос не превышал объема производства у поставщиков:

Если это неравенство выполняется строго, то задача называется «открытой» или «несбалансированной», если же , то задача называется «закрытой» транспортной задачей, и будет иметь вид (2):

Условие сбалансированности.

Это условие для решения закрытых транспортных задач (ЗТЗ).

11. Алгоритм решения транспортной задачи.

Применение алгоритма требует соблюдения ряда предпосылок:

1. Должна быть известна стоимость перевозки единицы продукта из каждого пункта производства в каждый пункт назначения.

2. Запас продуктов в каждом пункте производства должен быть известен.

3. Потребности в продуктах в каждом пункте потребления должны быть известны.

4. Общее предложение должно быть равно общему спросу.

Алгоритм решения транспортной задачи состоит из четырех этапов:

Этап I. Представление данных в форме стандартной таблицы и поиск любого допустимого распределения ресурсов. Допустимым называется такое распределение ресурсов, которое позволяет удовлетворить весь спрос в пунктах назначения и вывезти весь запас продуктов из пунктов производства.

Этап 2. Проверка полученного распределения ресурсов на оптимальность

Этап 3. Если полученное распределение ресурсов не является оптимальным, то ресурсы перераспределяются, снижая стоимость транспортировки.

Этап 4. Повторная проверка оптимальности полученного распределения ресурсов.

Данный итеративный процесс повторяется до тех пор, пока не будет получено оптимальное решение.

12. Модели управления запасами.

Несмотря на то, что любая модель управления запасами призвана отвечать на два основных вопроса (когда и сколько), имеется значительное число моделей, для построения которых используется разнообразный математический аппарат.

Такая ситуация объясняется различием исходных условий. Главным основанием для классификации моделей управления запасами является характер спроса на хранимую продукцию (напомним, что с точки зрения более общей градации сейчас мы рассматриваем лишь случаи с независимым спросом).

Итак, в зависимости от характера спроса модели управления запасами могут быть

детерминированными;

вероятностными.

В свою очередь детерминированный спрос может быть статическим, когда интенсивность потребления не изменяется во времени, или динамическим, когда достоверный спрос с течением времени может изменяться.

Вероятностный спрос может быть стационарным, когда плотность вероятности спроса не изменяется во времени, и нестационарным, где функция плотности вероятности меняется в зависимости от времени. Приведенную классификацию поясняет рисунок.

Наиболее простым является случай детерминированного статического спроса на продукцию. Однако такой вид потребления на практике встречается достаточно редко. Наиболее сложные модели - модели нестационарного типа.

Кроме характера спроса на продукцию при построении моделей управления запасами приходится учитывать множество других факторов, например:

сроки выполнения заказов. Продолжительность заготовительного периода может быть постоянной либо являться случайной величиной;

процесс пополнения запаса. Может быть мгновенным либо распределенным во времени;

наличие ограничений по оборотным средствам, складской площади т.п.

13. Системы массового обслуживания (СМО) и показатели их эффективности.

Системы массового обслуживания (СМО) представляют собой системы специального вида, реализующие многократное выполнение однотипных задач. Подобные системы играют важную роль во многих областях экономики, финансов, производства и быта. В качестве примеров СМО в финансово-экономической; сфере можно привести банки различных типов (коммерческие, инвестиционные, ипотечные, инновационные, сберегательные), страховые организации, государственные акционерные общества, компании, фирмы, ассоциации, кооперативы, налоговые инспекции, аудиторские службы, различные системы связи (в том числе телефонные станции), погрузочно-разгрузочные комплексы (порты, товарные станции), автозаправочные станции, различные предприятия и организации сферы обслуживания (магазины, справочные бюро, парикмахерские, билетные кассы, пункты по обмену валюты, ремонтные мастерские, больницы). Такие системы, как компьютерные сети, системы сбора, хранения и обработки информации, транспортные системы, автоматизированные производственные участки, поточные линии, различные военные системы, в частности системы противовоздушной или противоракетной обороны, также могут рассматриваться как своеобразные СМО

Каждая СМО включает в свою структуру некоторое число обслуживающих устройств, которые называют каналами (приборами, линиями) обслуживания. Роль каналов могут играть различные приборы, лица, выполняющие те или иные операции (кассиры, операторы, парикмахеры, продавцы), линии связи, автомашины, краны, ремонтные бригады, железнодорожные пути, бензоколонки и т.д.

Системы массового обслуживания могут быть одноканальными или многоканальными.

Каждая СМО предназначена для обслуживания (выполнения) некоторого потока заявок (требований), поступающих на вход системы большей частью не регулярно, а случайные моменты времени. Обслуживание заявок, в этом случае, также длится не постоянное, заранее известное время, а случайное время, которое зависит от многиx случайных, порой неизвестных нам, причин. После обслуживания заявки канал освобождается и готов к приему следующей заявки. Случайный характер потоказаявок и времени их обслуживания приводит к неравномерной загруженности СМО: в иное время на входе СМО могут скапливаться необслуженные заявки, что приводит к перегрузке СМО, а иногда при свободных каналах на входе СМО заявки не будет, что приводит к недогрузке СМО, т.е. к простаиванию ее каналов. Заявки, скапливающиеся на входе СМО, либо «становятся» в очередь, либо по причине невозможности дальнейшего пребывания в очереди покидают СМО необслуженными.

Показатели эффективности функционирования пары «СМО — потребитель», где под потребителем понимают всю совокупность заявок или некий их источник (например, средний доход, приносимый СМО в единицу времени, и т.п.). Эта группа показателей оказывается полезной в тех случаях, когда некоторый доход, получаемый от обслуживания заявок, и затраты на обслуживание измеряются в одних и тех же единицах. Эти показатели обычно носят вполне конкретный характер и определяются спецификой СМО, обслуживаемых заявок и дисциплиной обслуживания.

14. Уравнения динамики для вероятностных состояний (уравнения Колмогорова). Предельные вероятности состояний.

Формально дифференцируя уравнение Колмогорова—Чепмена по s при s = 0 получаем прямое уравнение Колмогорова:

Формально дифференцируя уравнение Колмогорова — Чепмена по t при t = 0 получаем обратное уравнение Колмогорова

Необходимо подчеркнуть, что для бесконечномерных пространств оператор уже не обязательно непрерывен, и может быть определен не всюду, например, быть дифференциальным оператором в пространстве распределений.

В том случае, если число состояний системы S является конечным и из каждого состояния представляется возможным перейти (за то или иное количество шагов) в каждое другое состояние, то предельные вероятности состояний существуют, а также не зависят от начального состояния системы.

На рис. показаны граф состояния и переходов, удовлетворяющие поставленному условию: из любого состояния система рано или поздно может перейти в любое другое состояние. Условие не будет выполняться при изменении направления стрелки 4—3 на графе рис, а на противоположное.

Допустим, что поставленное условие выполнено, и, следовательно, предельные вероятности существуют:

Предельные вероятности будут обозначаться теми же буквамичто и вероятности состояний, при этом под ними подразумеваются числа, а не переменные величины (функции времени).

Ясно, что предельные вероятности состояний должны давать в сумме единицу: Следовательно, в системе при устанавливается некоторый предельный стационарный режим: пусть система и меняет собственные состояния случайным образом, однако вероятность каждого из этих состояний не зависит от времени и каждое из них осуществляется с некоторой постоянной вероятностью, представляющей собой среднее относительное время пребывания системы в этом состоянии.

15. Процесс гибели и размножения.

Марковским процессом гибели и размножения с непрерывным временем назовем такой с.п., который может принимать только целые неотрицательные значения; изменения этого процесса могут происходить в любой момент времени t, при этом в любой момент времени он может либо увеличиваться на единицу, либо остаться неизменным.

Потоками размножения λi(t) будем называть пуассоновские потоки, ведущие к увеличению функции X(t). Соответственно μi(t) - потоки гибели, ведущие к уменьшению функции X(t).

Составим по графу уравнения Колмогорова:

Если поток с конечным числом состояний:

Система уравнений Колмогорова для процесса гибели и размножения с ограниченным числом состояний имеет вид:

Процессом чистого размножения называется такой процесс гибели и размножения, у которого интенсивности всех потоков гибели равны нулю.

Процессом чистой гибели называется такой процесс гибели и размножения, у которого интенсивности всех потоков размножения равны нулю.

16. Системы массового обслуживания с отказами .

Наиболее простой из рассматриваемых задач в рамках теории массового обслуживания является модель одноканальной СМО с отказами или потерями.

Следует отметить, что в данном случае количество каналов равно 1 (). Этот канал принимает пуассоновский поток заявок, интенсивность которого равняется . Время оказывает влияние на интенсивность:

Если заявка прибыла в канал, который в данный момент не является свободным, она получает отказ и больше не числится в системе. Обслуживание заявок осуществляется в течение случайного времени , распределение которого реализуется в соответствии с показательным законом с параметром :

17. Системы массового обслуживания с ожиданием .

Заявка, поступившая в момент, когда канал занят, становится в очередь и ожидает обслуживания.

Система с ограниченной длиной очереди. Предположим сначала, что количество мест в очереди ограничено числом m, т. е. если заявка пришла в момент, когда в очереди уже стоят m заявок, она покидает систему необслуженной. В дальнейшем, устремив m к бесконечности, мы получим характеристики одноканальной СМО без ограничений длины очереди.

Будем нумеровать состояния СМО по числу заявок, находящихся в системе (как обслуживаемых, так и ожидающих обслуживания):

—канал свободен;

—канал занят, очереди нет;

— канал занят, одна заявка стоит в очереди;

—канал занят, k - 1 заявок стоят в очереди;

— канал занят, т заявок стоят в очереди.

18. Методы принятия решений в условиях конфликта. Матричные игры. Чистые и смешанные стратегии игр.

Матричная игра - это конечная игра двух игроков с нулевой суммой, в которой задаётся выигрыш игрока 1 в виде матрицы (строка матрицы соответствует номеру применяемой стратегии игрока 2, столбец - номеру применяемой стратегии игрока 2; на пересечении строки и столбца матрицы находится выигрыш игрока 1, соответствующий применяемым стратегиям).

Для матричных игр доказано, что любая из них имеет решение и оно может быть легко найдено путём сведения игры к задаче линейного программирования.

Матричная игра двух игроков с нулевой суммой может рассматриваться как следующая абстрактная игра двух игроков.

Первый игрок имеет m стратегий i = 1,2,...,m, второй имеет n стратегий j = 1,2,...,n. Каждой паре стратегий (i,j) поставлено в соответствие число аij, выражающее выигрыш игрока 1 за счёт игрока 2, если первый игрок примет свою i-ю стратегию, а 2 - свою j-ю стратегию.

Каждый из игроков делает один ход: игрок 1 выбирает свою i-ю стратегию (i=), 2 - свою j-ю стратегию (j=), после чего игрок 1 получает выигрыш аij за счёт игрока 2 (если аij

Каждая стратегия игрока i=; j = часто называется чистой стратегией.

Определение. Смешанной стратегией игрока называется полный набор вероятностей применения его чистых стратегий.

Таким образом, если игрок 1 имеет m чистых стратегий 1,2,...,m, то его смешанная стратегия x- это набор чисел x = (x1,..., xm) удовлетворяющих соотношениям

xi³ 0 (i= 1,m), =1.

Аналогично для игрока 2, который имеет n чистых стратегий, смешанная стратегия y- это набор чисел

y = (y1, ..., yn), yj ³ 0, (j = 1,n), = 1.

Так как каждый раз применение игроком одной чистой стратегии исключает применение другой, то чистые стратегии являются несовместными событиями. Кроме того, они являются единственными возможными событиями.

Чистая стратегия есть частный случай смешанной стратегии. Действительно, если в смешанной стратегии какая-либо i-я чистая стратегия применяется с вероятностью 1, то все остальные чистые стратегии не применяются. И эта i-я чистая стратегия является частным случаем смешанной стратегии. Для соблюдения секретности каждый игрок применяет свои стратегии независимо от выбора другого игрока.

19. Геометрический метод решения матричной игры.

Решение игр размера 2xn или nx2 допускает наглядную геометрическую интерпретацию. Такие игры можно решать графически.

На плоскости XY по оси абсцисс отложим единичный отрезок A1A2 (рисунок 5.1). Каждой точке отрезка поставим в соответствие некоторую смешанную стратегию U = (u1, u2). Причем расстояние от некоторой промежуточной точки U до правого конца этого отрезка - это вероятность u1 выбора стратегии A1, расстояние до левого конца - вероятность u2 выбора стратегии A2. Точка А1 соответствует чистой стратегии А1, точка А2 - чистой стратегии А2.

В точках А1 и А2 восстановим перпендикуляры и будем откладывать на них выигрыши игроков. На первом перпендикуляре (совпадающем с осью OY) покажем выигрыш игрока А при использовании стратегии А1, на втором - при использовании стратегии A2. Если игрок А применяет стратегию A1, то его выигрыш при стратегии B1 игрока B равен 2, а при стратегии B2 он равен 5. Числам 2 и 5 на оси OY соответствуют точки B1 и B2. Аналогично на втором перпендикуляре найдем точки B"1 и B"2 (выигрыши 6 и 4).

Соединяя между собой точки B1 и B"1, B2 и B"2, получим две прямые, расстояние от которых до оси OX определяет средний выигрыш при любом сочетании соответствующих стратегий.

Например, расстояние от любой точки отрезка B1B"1 до оси OX определяет средний выигрыш игрока A при любом сочетании стратегий A1 и A2 (с вероятностями u1 и u2) и стратегии B1 игрока B.

Ординаты точек, принадлежащих ломаной B1MB"2 определяют минимальный выигрыш игрока A при использовании им любых смешанных стратегий. Эта минимальная величина является наибольшей в точке М, следовательно, этой точке соответствует оптимальная стратегия U* = (,), а ее ордината равна цене игры v.

Координаты точки M найдем, как координаты точки пересечения прямых B1B"1 и B2B"2.

Для этого необходимо знать уравнения прямых. Составить такие уравнения можно, используя формулу для уравнения прямой, проходящей через две точки:

Составим уравнения прямых для нашей задачи.

Прямая B1B"1: = или y = 4x + 2.

Прямая B2B"2: = или y = -x + 5.

Получим систему: y = 4x + 2,

Решим ее: 4x + 2 = -x + 5,

x = 3/5, y = -3/5 + 5 = 22/5.

Таким образом, U = (2/5, 3/5), v = 22/5.

20. Биматричные игры.

Биматричная игра - это конечная игра двух игроков с ненулевой суммой, в которой выигрыши каждого игрока задаются матрицами отдельно для соответствующего игрока (в каждой матрице строка соответствует стратегии игрока 1, столбец - стратегии игрока 2, на пересечении строки и столбца в первой матрице находится выигрыш игрока 1, во второй матрице - выигрыш игрока 2.)

Для биматричных игр также разработана теория оптимального поведения игроков, однако решать такие игры сложнее, чем обычные матричные.

21. Статистические игры. Принципы и критерии принятия решений в условиях полной и частичной неопределенности.

В исследовании операций принято различать три типа неопределенностей:

неопределенность целей;

неопределенность наших знаний об окружающей обстановке и действующих в данном явлении факторах (неопределенность природы);

неопределенность действий активного или пассивного партнера или противника.

В приведенной выше классификации тип неопределенностей рассматривается с позиций того или иного элемента математической модели. Так, например, неопределенность целей отражается при постановке задачи на выборе либо отдельных критериев, либо всего вектора полезного эффекта.

С другой стороны, два другие типа неопределенностей влияют, в основном, на составление целевой функции уравнений ограничений и метода принятия решения. Конечно, приведенное выше утверждение является достаточно условным, как, впрочем, и любая классификация. Мы приводим его лишь с целью выделить еще некоторые особенности неопределенностей, которые надо иметь в виду в процессе принятия решений.

Дело в том, что кроме рассмотренной выше классификации неопределенностей надо учитывать их тип (или "род") с точки зрения отношения к случайности.

о этому признаку можно различать стохастическую (вероятностную) неопределенность, когда неизвестные факторы статистически устойчивы и поэтому представляют собой обычные объекты теории вероятностей - случайные величины (или случайные функции, события и т.д.). При этом должны быть известны или определены при постановке задачи все необходимые статистический характеристики (законы распределения и их параметры).

Примером таких задач могут быть, в частности, система технического обслуживания и ремонта любого вида техники, система организации рубок ухода и т.д.

Другим крайним случаем может быть неопределенность нестохастического вида (по выражению Е.С.Вентцель - "дурная неопределенность"), при которой никаких предположений о стохастической устойчивости не существует. Наконец, можно говорить о промежуточном типе неопределенности, когда решение принимается на основании каких-либо гипотез о законах распределения случайных величин. При этом ЛПР должен иметь в виду опасность несовпадения его результатов с реальными условиями. Эта опасность несовпадения формализуется с помощью коэффициентов риска.

Принятие решений в условиях риска может быть основано на одном из следующих критериев:

критерий ожидаемого значения;

комбинации ожидаемого значения и дисперсии;

известного предельного уровня;

наиболее вероятного события в будущем.

operations research) И. о. - сравнительно новая область, краткая история к-рой восходит к началу Второй мировой войны. Эта точная мат. наука содержит четко определенный набор общих принципов, к-рые обеспечивают исследователей планом реализации операций научного исслед. Он включает следующие стадии. 1. Формулирование проблемы. 2. Построение мат. модели, репрезентирующей исследуемую систему. 3. Получение решения из данной модели. 4. Проверка модели и полученного из нее решения. 5. Установление контроля за решением. 6. Практ. реализация решения: внедрение. Формулирование проблемы Необходимо уделять серьезное внимание определению общего характера проблемы и, что еще важнее, целям исслед. Эти цели должны формулироваться в поведенческих терминах, с тем чтобы минимизировать или устранить двусмысленность и неопределенность. Должно быть тж отведено время на то, чтобы корректно установить приоритеты в отношении реально достижимых целей. Слишком большой список целей может вызвать потенциальные трудности с их реализацией, особенно если эти цели не четко увязаны в логическую последовательность. Построение математической модели Вторая фаза проведения исследований с т. зр. И. о. предполагает описание модели. Предназначение модели заключается в репрезентации реального мира. В И. о. такие модели являются символическими, выражаемыми в мат. терминах. Классическое уравнение Е = тс2 - типичный пример мат. модели. Традиционными формами для таких моделей служат алгебраические уравнения, к-рые не только знач. более экономны, чем вербальные формулировки, но тж влекут за собой тщательность и точность определения, необходимую для четкого выражения и понимания отдельных элементов и их взаимосвязей. Наиболее важной задачей в построении такой модели является четкая и точная разработка и определение целевой функции. Эта функция выражает взаимосвязь между независимыми и зависимыми переменными. Получение решения из данной модели Третья фаза заключается в поиске решения. Как правило, желательно найти оптимальное или лучшее решение, однако следует учитывать, что такое решение будет обладать ценностью лишь в контексте рассматриваемой модели. Поскольку модель является лишь репрезентацией проблемы реального мира, существует множество ситуаций, в к-рых оптимальное решение может оказаться не сопряженным с наилучшим выбором. Однако, когда оптимальное решение сочетается с менее оптимальными или более реалистическими альтернативными решениями, с возможностью их последующей проверки применительно к реальной проблеме, использование оптимального решения влечет за собой определенные выгоды. Одна из таких выгод связана с определением в конце исслед. относительной дистанции между этим идеальным решением и принятой альтернативой. Побочным продуктом такой методологии использования И. о. является предположение, что менее оптимальные решения могут рассматриваться в качестве ступенек на пути достижения цели. Этот метод последовательных приближений может приводить исследователя операций к более плодотворным результатам. Существует множество мат. процедур для получения решений в модели И. о. Эти процедуры основываются на приложениях теории вероятностей. Проверка модели и полученного из нее решения Проверка модели и решения связана с реализацией двух шагов. Первый состоит в тщательном анализе всех элементов модели, включ. перепроверку ее алгебраических множителей на присутствие упрощенческих косметических ошибок, к-рые могут влиять на валидность. Др. еще более важный шаг связан с переопределением связей модели с предпосылками, к-рые изначально использовались для разработки этой модели. Более систематический план проверки включает тж использование ист. данных, к-рые можно легко ввести в модель, с тем чтобы можно было получить опытное (prototype) решение. Эти данные должны быть тщательным образом изучены, чтобы гарантировать специалисту по исследованию операций валидность проверки. Следует обратить внимание на то, что коль скоро эта модель практически разрабатывается на основе предшествующих ист. данных и потребностей, она может повести себя совершенно иначе в будущем. Др. распространенной ошибкой является введение в модель факторов, к-рые не были представлены в ист. базе данных. Установление контроля Пятая стадия, установление контроля за решением, появляется в ходе многократного использования модели. Контроль над моделью устанавливается в тех случаях, когда специалист по исследованию операций допускает расхождения в значениях ист. данных и признает, что эти расхождения могут влиять на связи между элементами модели и получаемыми решениями. Др. важным шагом может стать разработка ограничений по отобранным осн. параметрам модели для установления диапазона приемлемых значений с учетом реальных данных. Реализация модели Заключительным шагом является введение в модель реальных данных. Практ. реализация модели сопряжена с очевидным шагом введения реальных данных и получения решения реальной задачи. Кроме того, представляется тж важным оценить близость реального решения к ист. решениям, полученным ранее, а тж последствия этого решения для совершенствования способов эксплуатации модели. Эти шаги обеспечивают важную связь между мат. природой И. о. и практ. результатами исследования. В конечном счете, эти решения и их управленческие последствия используются опытным специалистом по И. о. для доведения модели в целях ее возможного использования в будущем. См. также Методология (научных) исследований Р. С. Эндрулис

Исследование операций – наука, занимающаяся разработкой и практическим применением математических, количественных методов для обоснования решений во всех областях целенаправленной человеческой деятельности (эффективного организационного управления) .

Общие черты исследования операций

    В каждой задаче речь идет о каком-то мероприятии, преследующем определенную цель.

    Заданы некоторые условия, характеризующие обстановку (в том числе средства, которыми мы можем распоряжаться).

    В рамках этих условий требуется принять такое решение, чтобы задуманное мероприятие было в каком-то смысле наиболее выгодным.

Особенности исследования операций

    Системный подход к анализу поставленной проблемы означает, что частная задача должна рассматриваться с точки зрения её влияния на критерий функционирования всей системы.

    Наибольший эффект может быть достигнут только при непрерывном исследовании, обеспечивающем преемственность в переходе от одной задачи к другой, возникающей в ходе решения предыдущей.

    Хотя цель исследования операций – найти оптимальное решение, но из-за сложности вычисления комбинаторных задач ограничиваются поиском «достаточно хорошего» решения.

    Операционные исследования проводятся комплексно, по многим направлениям. Для проведения исследования создается операционные группы:

Основные понятия исследования операций

ОПЕРАЦИЯ – всякое управляемое (т.е. зависит от выбора параметров) мероприятие, объединенное единым замыслом и направленное к достижению какой-то цели.

РЕШЕНИЕ – всякий определенный выбор зависящих от нас параметров.

ОПТИМАЛЬНЫЕ РЕШЕНИЯ – решения по тем или иным признакам предпочтительные перед другими.

ЦЕЛЬ ИССЛЕДОВАНИЯ ОПЕРАЦИИ – предварительное количественное обоснование оптимальных решений.

ЭЛЕМЕНТЫ РЕШЕНИЯ – параметры, совокупность которых образует решение.

ПОКАЗАТЕЛЬ ЭФФЕКТИВНОСТИ (ЦЕЛЕВАЯ ФУНКЦИЯ) –количественный критерий, позволяющий сравнивать между собой по эффективности разные решения и отражающий целевую направленность операции (W=>maxилиW=>min).

Лучшим считается то решение, которое в максимальной степени способствует достижению поставленной цели.

Понятие математической модели операции

Схематичное, упрощенное описание операции с помощью того или иного математического аппарата, отражающее важнейшие черты операции, все существенные факторы, от которых в основном зависит успех операции.

Прямые и обратные задачи исследования операций

ПРЯМЫЕ ЗАДАЧИ отвечают на вопрос, что будет, если в заданных условиях мы примем какое-то решение х Х, т.е. чему будет равен показатель эффективностиW(или ряд показателей).

Для решения такой задачи строится мат. модель, позволяющая выразить один или несколько показателей эффективности через заданные условия и элементы решения.

ОБРАТНЫЕ ЗАДАЧИ отвечают на вопрос, как выбрать решение х для того, чтобы показатель эффективности Wобратился в максимум (минимум).

Эти задачи сложнее. Они могут быть решены простым перебором решений прямых задач.

Но когда число вариантов решений велико применяются методы направленного перебора, в которых оптимальное решение находится путем выполнения последовательных «попыток» или приближений, из которых каждое приближает нас к искомому оптимальному.

Под операцией понимается любое мероприятие, объединенное единым замыслом и направление к достижению определенной цели.

Операция всегда является управляемым мероприятием, т.е. от нас зависит выбор параметров, характеризующих способ ее организации.

Всякий определенный выбор зависящих от нас параметров будем называть решением .

Оптимальными называются решения, которые, по тем или иным соображениям, предпочтительнее других.

Основная задача исследования операций – предварительное количественное обоснование оптимальных решений . Исследование операций не ставит задачу полную автоматизацию принятия решений. Решение всегда принимается человеком. Задача исследования операций – подготовить количественные данные и рекомендации, облегчающие человеку принятие решений.

Наряду с основной задачей - обоснованием оптимальных решений – к области исследования операций относятся и другие задачи:

Сравнительная оценка различных вариантов организации операции,

Оценка влияния на операцию различных параметров,

Исследование «узких мест», т.е. элементов, нарушение работы которых особенно сильно сказывается на успехе операции, и т.д.

Эти вспомогательные задачи приобретают особую важность, когда данная операция рассматривается не изолировано, а как составной элемент целой системы операций. «Системный» подход к задачам исследования операций требует учета взаимной зависимости и обусловленности целого комплекса мероприятий, т.е. окончательное решение принимать с учетом роли и места данной операции в системе.

Под эффективностью операции понимается степень ее приспособленности к выполнению стоящей перед ней задачи.

Чтобы судить об эффективности операции и сравнивать между собой по эффективности различно организованные операции, нужно иметь некоторый численный критерий оценки или показатель эффективности .

Последовательность действий в исследовании операций.

1. Формулируется цель исследования и разрабатывается постановка задачи.

2. Для применения количественных методов в любой области всегда требуется построить математическую модель явления. На основе анализа свойств оригинала осуществляется построение этой модели.

3. После построения модели на ней получают результаты

4. Они интерпретируются в терминах оригинала и переносятся на оригинал.

5. С помощью сравнения осуществляется сопоставление результатов моделирования с результатами, полученными при непосредственном исследовании оригинала.

Если результаты, полученные с помощью модели, близки к результатам, полученным при исследовании оригинала, то в отношении данных свойств модель можно считать адекватной оригиналу.

При проектировании и эксплуатации АСУ часто возникают задачи, связанные с анализом, как количественных, так и качественных закономерностей их функционирования, определением их оптимальной структуры и т.д.

Непосредственное экспериментирование на объектах для решения этих задач имеет ряд существенных недостатков:

1. Нарушается установленный режим работы объекта.

2. В натурном эксперименте невозможно проанализировать все альтернативные варианты построения системы и т.д.

Эти задачи целесообразно решать на модели, отделенной от объекта и реализуемой на ЭВМ.

При моделировании информационных систем находят широкое применение математические модели.

Метод математического моделирования является способом исследования различных объектов путем составления соответствующего математического описания и вычисления на его основе характеристик исследуемого объекта.

Необходимо построение математической модели. Она формализовано отражает процесс функционирования оригинала и описывает основные закономерности его поведения. При этом все второстепенные, несущественные факторы из рассмотрения исключаются.

Объектом математического моделирования являются сложные системы. Сложной системой называют определенным образом организованную и целенаправленную функционирующую совокупность большого числа информационно связанных и взаимодействующих элементов в условиях воздействия внешних факторов.

Можно выделить 4 основных этапа моделирования систем на ЭВМ:

Построение концептуальной модели системы и ее формализация;

Алгоритмизация модели системы и разработка моделирующей программы;

Получение и интерпретация предварительных результатов моделирования;

Проверка адекватности модели и системы; корректировка модели

Основной расчет показателей качества функционирования системы по результатам моделирования, реализация модели.

Лекция 3. Основные понятия метода экспертных оценок. Формирование экспертных групп. Процедуры опроса. Методы ранжирования, парных сравнений, оценивание в относительной шкале.

Глава 1. Предмет и задачи исследования операций.

§ 1. Что такое исследование операций и чем оно занимается.

§ 2. Основные понятия и принципы исследования операции.

§ 3. Математические модели операций.

Глава 2. Разновидности задач исследования операций и подходов к их решению.

§ 4. Прямые и обратные задачи исследования операций. Детерминированные задачи.

§ 5. Проблема выбора решения в условиях неопределенности.

§ 6. Многокритериальные задачи исследования операций. «Системный подход».

Глава 3. Линейное программирование.

§ 7. Задачи линейного программирования.

§ 8. Основная задача линейного программирования.

§ 9. Существование решения 03ЛП и способы его нахождения.

§ 10. Транспортная задача линейного программирования.

§ 11. Задачи целочисленного программирования. Понятие о нелинейном программировании.

Глава 4. Динамическое программирование.

§ 12. Метод динамического программирования.

§ 13. Примеры решения задач динамического программирования.

§ 14. Задача динамического программирования в общем виде. Принцип оптимальности.

Глава 5.Марковские случайные процессы.

§ 15. Понятие о марковском процессе.

§ 16. Потоки событий.

§ 17. Уравнения Колмогорова для вероятностей состояний. Финальные вероятности состояний.

Глава 6. Теория массового обслуживания.

§ 18. Задачи теории массового обслуживания. Классификация систем массового обслуживания.

§ 19. Схема гибели и размножения. Формула Литтла.

§ 20. Простейшие системы массового обслуживания и их характеристики.

§ 21. Более сложные задачи теории массового обслуживания.

Глава 7. Статистическое моделирование случайных процессов (метод Монте-Карло).

§ 22. Идея, назначение и область применимости метода.

§ 23. Единичный жребий и формы его организации.

§ 24. Определение характеристик стационарного случайного процесса по одной реализации.

Глава 8. Игровые методы обоснования решении.

§ 25. Предмет и задачи теории игр.

§ 26. Антагонистические матричные игры.

§ 27. Методы решения конечных игр.

§ 28. Задачи теории статистических решении.

ПРЕДМЕТ И ЗАДАЧИ ИССЛЕДОВАНИЯ ОПЕРАЦИЙ

Основные понятия и принципы исследования операций

В этом параграфе мы познакомимся с терминологией, основными понятиями и принципами науки «исследование операций».

Операцией называется всякое мероприятие (система действий), объединенное единым замыслом и направленное к достижению какой-то цели (все мероприятия, рассмотренные в пунктах 1 - 8 предыдущего параграфа, являются «операциями»).

Операция есть всегда управляемое мероприятие, т. е. от нас зависит, каким способом выбрать некоторые параметры, характеризующие её организацию. «Организация» здесь понимается в широком смысле слова, включая набор технических средств, применяемых в операции.

Всякий определенный выбор зависящих от нас параметров называется решением. Решения могут быть удачными и неудачными, разумными и неразумными. Оптимальными называются решения, по тем или другим признакам предпочтительные перед другими. Цель исследования операций - предварительное количественное обоснование оптимальных решений.

Иногда (относительно редко) в результате исследования удается указать одно-единственное строго оптимальное решение, гораздо чаще - выделить область практически равноценных оптимальных (разумных) решений, в пределах которой может быть сделан окончательный выбор.

Заметим, что само принятие решения выходит за рамки исследования операции и относится к компетенции ответственного лица, чаще - группы лиц, которым предоставлено право окончательного выбора и на которых возложена ответственность за этот выбор. Делая выбор, они могут учитывать, наряду с рекомендациями, вытекающими из математического расчета, еще ряд соображений (количественного и качественного характера), которые этим расчетом не были учтены.

Непременное присутствие человека (как окончательной инстанции, принимающей решение) не отменяется даже при наличии полностью автоматизированной системы управления, которая, казалось бы, принимает решение без участия человека. Нельзя забывать о том, что само создание управляющего алгоритма, выбор одного из возможных его вариантов, есть тоже решение, и весьма ответственное. По мере развития управляющих автоматов функции человека не отменяются, а просто перемещаются с одного, элементарного, уровня на другой, высший. Кроме того, ряд автоматизированных систем управления предусматривает в ходе управляемого процесса активное вмешательство человека.

Те параметры, совокупность которых образует решение, называются элементами решения. В качестве элементов решения могут фигурировать различные числа, векторы, функции, физические признаки и т. д. Например, если составляется план перевозок однородных грузов из пунктов отправления А 1 ,А 2 ,…, А m в пункты назначения В 1 ,В 2 , ..., В n , то элементами решения будут числа x ij , показывающие, какое количество груза будет отправлено из 1-го пункта отправления А i в j -й пункт назначения В j . Совокупность чисел x 11 , x 12, …, x 1 n , …, x m 1 , x m 2 , …, x mn образует решение.

В простейших задачах исследования операций количество элементов решения может быть сравнительно невелико. Но в большинстве задач, имеющих практическое значение, число элементов решения очень велико, в чем читатель может убедиться, попытавшись самостоятельно выделить и «назвать по имени» элементы решения в примерах 1 - 8 предыдущего параграфа. Для упрощения мы будем всю совокупность элементов решения обозначать одной буквой x и говорить «решение х».

Кроме элементов решения, которыми мы, в каких-то пределах, можем распоряжаться, в любой задаче исследования операций имеются еще и заданные, «дисциплинирующие» условия, которые фиксированы с самого начала и нарушены быть не могут (например, грузоподъемность машины; размер планового задания;

весовые характеристики оборудования и т. п.). В частности, к таким условиям относятся средства (материальные, технические, людские), которыми мы вправо распоряжаться, и иные ограничения, налагаемые на решение. В своей совокупности они формируют так называемое «множество возможных решений».

Обозначим это множество опять-таки одной буквой X, а тот факт, что решение х принадлежит этому множеству, будем записывать в виде формулы: х X (читается: элемент х входит в множество X).

Речь идет о том, чтобы в множестве возможных решений Х выделить те решения х (иногда - одно, а чаще - целую область решений), которые с той или другой точки зрения эффективнее (удачнее, предпочтительнее) других. Чтобы сравнивать между собой по эффективности разные решения, нужно иметь какой-то количественный критерий, так называемый показатель эффективности (его часто называют «целевой функцией»). Этот показатель выбирается так, чтобы он отражал целевую направленность операции. «Лучшим» будет считаться то решение, которое в максимальной степени способствует достижению поставленной цели. Чтобы выбрать, «назвать по имени» показатель эффективности W, нужно, прежде всего, спросить себя: чего мы хотим, к чему стремимся, предпринимая операцию? Выбирая решение, мы, естественно, предпочтем такое, которое обращает показатель эффективности W в максимум (или же в минимум). Например, доход от операции хотелось бы обратить в максимум; если же показателем эффективности являются затраты, их желательно обратить в минимум. Если показатель эффективности желательно максимизировать, мы это будем записывать в виде W => mах, а если минимизировать - W => min.

Очень часто выполнение операции сопровождается действием случайных факторов («капризы» погоды, колебания спроса и предложения, отказы технических устройств и т. д.). В таких случаях обычно в качестве показателя эффективности берется не сама величина, которую хотелось бы максимизировать (минимизировать), а ее среднее значение (математическое ожидание).

В некоторых случаях бывает, что операция, сопровождаемая случайными факторами, преследует какую-то вполне определенную цель А, которая может быть только достигнута полностью или совсем не достигнута (схема «да-нет»), и никакие промежуточные результаты нас не интересуют. Тогда в качестве показателя эффективности выбирается вероятность достижения этой цели Р (А ). Например, если ведется стрельба по какому-то объекту с непременным условием уничтожить его, то показателем эффективности будет вероятность уничтожения объекта.

Неправильный выбор показателя эффективности очень опасен. Операции, организованные под углом зрения неудачно выбранного критерия, могут привести к неоправданным затратам и потерям (вспомним хотя бы пресловутый «вал» в качестве основного критерия оценки хозяйственной деятельности предприятий).

Для иллюстрации принципов выбора показателя эффективности вернемся опять к примерам 1 - 8 § 1, выберем для каждого из них естественный показатель эффективности и укажем, требуется его максимизировать или минимизировать. Разбирая примеры, нужно иметь в виду, что не во всех из них выбор показателя эффективности однозначно диктуется словесным описанием задачи, так что по этому вопросу возможны расхождения между читателем и автором.

1. План снабжения предприятий. Задача операции - обеспечить снабжение сырьем при минимальных расходах на перевозки. Показатель эффективности R - суммарные расходы на перевозки сырья за единицу времени, например, месяц (R => min).

2. Постройка участка магистрали. Требуется так спланировать строительство, чтобы закончить его как можно скорее. Естественным показателем эффективности было бы время завершения стройки, если бы оно не было связано со случайными факторами (отказы техники, задержки в выполнении отдельных работ). Поэтому в качестве показателя эффективности можно выбрать среднее ожидаемое время Т окончания стройки (Т => min).

3. Продажа сезонных товаров. В качестве показателя эффективности можно взять среднюю ожидаемую прибыль П от реализации товаров за сезон (П => mах).

4. Снегозащита дорог. Речь идет о наиболее выгодном экономически плане снегозащиты, поэтому в качестве показателя эффективности можно выбрать средние за единицу времени (например, за год) расходы R на содержание и эксплуатацию дорог, включая расходы, связанные как с сооружением защитных устройств, так и с расчисткой дорог и задержками транспорта (R => min).

5. Противолодочный рейд. Так как рейд имеет вполне определенную цель А - уничтожение лодки, то в качестве показателя эффективности следует выбрать вероятность Р (A ) того, что лодка будет уничтожена.

6. Выборочный контроль продукции. Естественный показатель эффективности, подсказанный формулировкой задачи, это средние ожидаемые расходы R на контроль за единицу времени, при условии, что система контроля обеспечивает заданный уровень качества, например, средний процент брака не выше заданного (R => min).

7. Медицинское обследование. В качестве показателя эффективности можно выбрать средний процент (долю) Q больных и носителей инфекции, которых удалось выявить (Q => шах).

8. Библиотечное обслуживание. В формулировке задачи сознательно допущена некоторая нечеткость:

неясно, что значит «наилучшее обслуживание абонентов» или «удовлетворение их запросов в максимальной мере». Если о качестве обслуживания судить по времени, которое запросивший книгу абонент ждет ее получения, то в качестве показателя эффективности можно взять среднее время Т ожидания книги читателем, подавшим на нее заявку (Т => min). Можно подойти к вопросу и с несколько иных позиций, выбрав в качестве показателя эффективности среднее число М книг, выданных за единицу времени (М => mах).

Рассмотренные примеры специально подобраны настолько простыми, чтобы выбор показателя эффективности был сравнительно нетруден и прямо диктовался словесной формулировкой задачи, ее (почти всегда) однозначной целевой направленностью. Однако на практике это далеко не всегда бывает так. В этом читатель может убедиться, попытавшись, например, выбрать показатель эффективности работы городского транспорта. Что взять в качестве такого показателя? Среднюю скорость передвижения пассажиров по городу? Или среднее число перевезенных пассажиров? Или среднее количество километров, которое придется пройти пешком человеку, которого транспорт не может доставить к нужному месту? Тут есть над чем поразмыслить!

К сожалению, в большинстве задач, имеющих практическое значение, выбор показателя эффективности не прост и решается неоднозначно. Для сколько-нибудь сложной задачи типично положение, когда эффективность операции не может быть исчерпывающим образом охарактеризована одним единственным числом - на помощь ему приходится привлекать другие. С такими «многокритериальными» задачами мы познакомимся в § 6.

Примеры решения задач динамического программирования

В этом параграфе мы рассмотрим (и даже решим до конца) несколько простых (до крайности упрощенных) примеров задач динамического программирования

1. Прокладка наивыгоднейшего пути между двумя пунктами. Вспомним задачу 4 предыдущего параграфа и решим ее до конца в крайне (и намеренно) упрощенных условиях. Нам нужно соорудить путь, соединяющий

два пункта А и В, из которых второй лежит к северо-востоку от первого. Для простоты допустим,. что прокладка пути состоит из ряда шагов, и на каждом шаге мы можем двигаться либо строго на восток, либо строго на север; любой путь из А в В представляет собой ступенчатую ломаную линию, отрезки которой параллельны одной из координатных осей (рис. 13.1). Затраты на сооружение каждого из таких отрезков известны. Требуется проложить такой путь из А в В, при котором суммарные затраты минимальны.

Как это сделать? Можно поступить одним из двух способов: либо перебрать все возможные варианты пути, и выбрать тот, на котором затраты минимальны (а при большом числе отрезков это очень и очень трудно!); либо разделить процесс перехода из А в В на отдельные шаги (один шаг - один отрезок) и оптимизировать управление по шагам. Оказывается, второй способ несравненно удобнее! Тут, как и везде в исследовании операций, сказываются преимущества целенаправленного, организованного поиска решения перед наивным «слепым» перебором.

Продемонстрируем, как это делается, на конкретном примере. Разделим расстояние от А до В в восточном направлении, скажем, на 7 частей, а в северном - на 5 частей (в принципе дробление может быть сколь угодно мелким). Тогда любой путь из А в В состоит из т = 7 + 5 == 12 отрезков, направленных на восток или на север (рис. 13.2). Проставим на каждом из отрезков число, выражающее (в каких-то условных единицах) стоимость прокладки пути по этому отрезку. Требуется выбрать такой путь из А в В, для которого сумма чисел, стоящих на отрезках, минимальна.

Будем рассматривать сооружаемый путь как управляемую систему S, перемещающуюся под влиянием управления из начального состояния А в конечное В. Состояние этой системы перед началом каждого шага будет характеризоваться двумя координатами: восточной (х) и северной (у), обе - целочисленные (0 х 5 7, 0 у 5). Для каждого из состояний системы (узловой точки прямоугольной сетки на рис. 13.2) мы должны найти условное оптимальное управление: идти нам из этой точки на север (управление «с») или на восток (управление «в»). Выбирается это управление так, чтобы стоимость всех оставшихся до конца шагов (включая данный) была минимальна. Эту стоимость мы по-прежнему будем называть «условным оптимальным выигрышем» (хотя в данном случае это не «выигрыш», а «проигрыш») для данного состояния системы S перед началом очередного шага.

Процедуру условной оптимизации будем разворачивать в обратном направлении - от конца к началу. Прежде всего произведем условную оптимизацию последнего, 12-го шага. Рассмотрим отдельно правый верхний угол нашей прямоугольной сетки (рис. 13.3). Где мы можем находиться после 11-го шага? Только


там, откуда за один (последний) шаг можно попасть в В, т. е. в одной из точек В 1 или В 2 . Если мы находимся в точке В 1 , у нас нет выбора (управление вынужденное): надо идти на восток, и это обойдется нам в 10 единиц. Запишем это число 10 в кружке у точки В 1 , а оптимальное управление покажем короткой стрелкой, исходящей из В 1 и направленной на восток. Для точки В 2 управление тоже вынужденное (север), расход до конца равен 14, мы его запишем в кружке у точки В 2 . Таким образом, условная оптимизация последнего шага сделана, и условный оптимальный выигрыш для каждой из точек В 1 , В 2 найден и записан в соответствующем кружке.

Теперь давайте оптимизировать предпоследний (11-й) шаг. После предпредпоследнего (10-го) шага мы могли оказаться в одной из точек С 1 , С 2 , С 3 (рис. 13.4). Найдем для каждой из них условное оптимальное управление и условный оптимальный выигрыш. Для точки С 1 управление вынужденное: идти на восток;

обойдется это нам до конца в 21 единицу (11 на данном шаге, плюс 10, записанных в кружке при В 1). Число 21 записываем в кружке при точке С 1 . Для точки С 2 управление уже не вынужденное: мы можем идти как на восток, так и на север. В первом случае мы затратим на данном шаге 14 единиц и от В 2 до конца - еще 14, всего 28 единиц. Если пойдем на север, затратим 13 + 10, всего 23 единицы. Значит, условное оптимальное управление в точке С 2 - идти на север (отмечаем это стрелкой, а число 23 записываем в кружке у С 2), Для точки С 3 управление снова вынужденное («с»), обойдется это до конца в 22 единицы (ставим стрелку на север, число 22 записываем в кружке при С 3 ).

Аналогично, «пятясь» от предпоследнего шага назад, найдем для каждой точки с целочисленными координатами условное оптимальное управление («с» или «в»), которое обозначим стрелкой, и условный оптимальный выигрыш (расход до конца пути), который запишем в кружке. Вычисляется он так: расход на данном шаге складывается с уже оптимизированным расходом, записанным в кружке, куда ведет стрелка. Таким образом, на каждом шаге мы оптимизируем только этот шаг, а следующие за ним - уже оптимизированы. Конечный результат процедуры оптимизации показан на рис. 13.5.

Таким образом, условная оптимизация уже выполнена: в какой бы из узловых точек мы ни находились, мы уже знаем, куда идти (стрелка) и во что нам обойдется путь до конца (число в кружке). В кружке при точке А записан оптимальный выигрыш на все сооружение пути из А в В:

W* = 118.

Теперь остается построить безусловное оптимальное управление - траекторию, ведущую из А и В самым дешевым способом. Для этого нужно только «слушаться стрелок», т. е. прочитать, что они предписывают делать на каждом шаге. Такая оптимальная траектория отмечена на рис. 13.5 дважды обведенными кружками. Соответствующее безусловное оптимальное управление будет:

х* = (с, с, с, с, в, в, с, в, в, в, в, в),

т. е. первые четыре шага мы должны делать на север, следующие два - на восток, затем опять один на север и остальные пять - на восток. Задача решена.

Заметим, что в ходе условной оптимизации мы можем столкнуться со случаем, когда оба управления для какой-то точки на плоскости являются оптимальными, т. е. приводят к одинаковому расходу средств от этой точки до конца, Например, в точке с координатами (5; 1) оба управления «с» и «в» являются оптимальными и дают расход до конца равным 62. Из них мы произвольно выбираем любое (в нашем случае мы выбрали «с»; с тем же успехом мы могли бы выбрать «в»). Такие случаи неоднозначного выбора оптимального управления постоянно встречаются в динамическом программировании; в дальнейшем мы специально отмечать их не будем, а попросту выберем произвольно любой из равноценных вариантов. От этого произвола, разумеется, может зависеть оптимальное управление всем процессом, но не оптимальный выигрыш. Вообще, в задачах динамического программирования (как и в задачах линейного) решение далеко не всегда единственное.

А теперь вернемся к началу и попробуем решить задачу «наивным» способом, выбирая на каждом шаге, начиная с первого, самое выгодное (для этого шага) направление (если таких два, выбираем любое). Таким способом мы получим управление

х = (с, с, в, в, в, в, с, в, в, в, с, с).

Подсчитаем расходы для этой траектории. Они будут равны W =10 +12 +8+10 +11 +13 +15+8 + +10+9+8+14=128, что безусловно больше, чем W* = 118. В данном случае разница не очень велика, но в других она может быть существенной.

В решенной выше задаче условия были намеренно до крайности упрощены. Разумеется, никто не будет вести железнодорожный путь «по ступенькам», перемещаясь только строго на север или строго на восток. Такое упрощение мы сделали для того, чтобы в каждой точке выбирать только из двух управлений: «с» или «в». Можно было бы вместо двух возможных направлений ввести их несколько и, кроме того, взять шаги помельче; принципиального значения это не имеет, но, разумеется, усложняет и удлиняет расчеты.

Заметим, что задачи, сходные с рассмотренной выше, очень часто встречаются на практике: например, при выборе наискорейшего пути между двумя точками или наиболее экономного (в смысле расхода горючего) набора скорости и высоты летательным аппаратом.

Сделаем одно попутное замечание. Внимательный читатель, вероятно, заметил, что в нашей задаче точки А и В (начало и конец) в принципе ничем друг от друга не отличаются: можно было бы строить условные оптимальные управления не с конца к началу, а с начала к концу, а безусловные - в обратном направлении. Действительно, это так: в любой задаче динамического программирования «начало» и «конец» можно поменять местами. Это совершенно равносильно описанной ранее методике в расчетном отношении, но несколько менее удобно при словесном объяснении идеи метода: легче аргументировать, ссылаясь на «уже сложившиеся» условия к началу данного шага, чем на те, которые еще «предстоят» после этого шага. По существу же оба подхода совершенно равносильны.

2. Задача о распределении ресурсов. Метод динамического программирования позволяет с успехом решать многие экономические задачи (см., например, ). Рассмотрим одну из простейших таких задач. В нашем распоряжении имеется какой-то запас средств (ресурсов) К, который должен быть распределен между т предприятиями П 1 , П 2 , ..., П m . Каждое из предприятий П i при вложении в него каких-то средств х приносит доход, зависящий от x , т. е. представляющий собой какую-то функцию (x ). Все функции (x ) (i = 1, 2, ..., т) заданы (разумеется, эти функции - неубывающие). Спрашивается, как нужно распределить средства К. между предприятиями, чтобы в сумме они дали максимальный доход?

Эта задача легко решается методом динамического программирования.. Хотя в своей постановке она не содержит упоминания о времени, можно все же операцию распределения средств мысленно развернуть в какой-то последовательности, считая за первый шаг вложение средств в предприятие П 1 , за второй - в П 2 и т. д.

Управляемая система S в данном случае - средства или ресурсы, которые распределяются. Состояние системы S перед каждым шагом характеризуется одним числом S - наличным запасом еще не вложенных средств. В этой задаче «шаговыми управлениями» являются средства х 1 , х 2 , ..., х 3 , выделяемые предприятиям. Требуется найти оптимальное управление, т. е. такую совокупность чисел х 1 , х 2 , ..., х m , при которой суммарный доход максимален:

(13.1)

Решим эту задачу сначала в общем, формульном виде, а потом - для конкретных числовых данных. Найдем для каждого i -го шага условный оптимальный выигрыш (от этого шага и до конца), если мы подошли к данному шагу с запасом средств S. Обозначим условный оптимальный выигрыш W i (S), а соответствующее ему условное оптимальное управление - средства, вкладываемые в i -е предприятие, - x i (S).

Начнем оптимизацию с последнего, т - го шага. Пусть мы подошли к этому шагу с остатком средств S. Что нам делать? Очевидно, вложить всю сумму S целиком в предприятие П m . Поэтому условное оптимальное управление на m -м шаге: отдать последнему предприятию все имеющиеся средства S, т. е.

а условный оптимальный выигрыш

W m (S)= (S).

Задаваясь целой гаммой значений S (располагая их достаточно тесно), мы для каждого значения S будем знать x m (S) и W m (S). Последний шаг оптимизирован.

Перейдем к предпоследнему, - 1)-му шагу. Пусть мы подошли к нему с запасом средств S. Обозначим W m -1 (S) условный оптимальный выигрыш на двух последних шагах: (m - 1)-м и m -м (который уже оптимизирован). Если мы выделим на (m - 1)-м шаге (m - 1)-му предприятию средства х, то на последний шаг останется S - х. Наш выигрыш на двух последних шагах будет равен

,

и нужно найти такое х, при котором этот выигрыш максимален:

Знак означает, что берется максимальное значение по всем х, какие только возможны (вложить больше, чем S, мы не можем), от выражения, стоящего в фигурных скобках. Этот максимум и есть условный оптимальный выигрыш за два последних шага, а то значение х, при котором этот максимум достигается,- условное оптимальное управление на (т- 1)-м шаге.

и соответствующее ему условное оптимальное управление x i (S) - то значение х, при котором этот максимум достигается.

Продолжая таким образом, дойдем, наконец, до 1-го предприятия П 1 . Здесь нам не нужно будет варьировать значения S; мы точно знаем, что запас средств перед первым шагом равен К:

Итак, максимальный выигрыш (доход) от всех предприятий найден. Теперь остается только «прочесть рекомендации». То значение х, при котором достигается максимум (13.4), и есть оптимальное управление на 1-м шаге. После того как мы вложим эти средства в 1-е предприятие, у пас их останется К- . «Читая» рекомендацию для этого значения S, выделяем второму предприятию оптимальное количество средств:

,

и т. д. до конца.

А теперь решим численный пример. Исходный запас средств К = 10 (условных единиц), и требуется его оптимальным образом распределить между пятью предприятиями (т = 5). Для простоты предположим, что вкладываются только целые количества средств. Функции дохода (х ) заданы в таблице 13.1.

Таблица 13.1

х
0,5 1,0 1,4 2,0 2,5 2,8 3,0 3,0 0,1 0,5 1,2 1,8 2,5 2,9 3,5 3,5 0,6 1,1 1,2 1,4 1,6 1,7 1,8 1,8 0,3 0,6 1,3 1,4 1,5 1,5 1,5 1,5 1,0 1,2 1,3 1,3 1,3 1,3 1,3 1,3

В каждом столбце, начиная с какой-то суммы вложений, доходы перестают возрастать (реально это соответствует тому, что каждое предприятие способно «освоить» лишь ограниченное количество средств).

Произведем условную оптимизацию так, как это было описано выше, начиная с последнего, 5-го шага. Каждый раз, когда мы подходим к очередному шагу, имея запас средств S, мы пробуем выделить па этот шаг то или другое количество средств, берем выигрыш па данном шаге по таблице 13.1, складываем с уже оптимизированным выигрышем на всех последующих шагах до конца (учитывая, что средств у нас осталось уже меньше, как раз на такое количество средств, которое мы выделили) и находим то вложение, на котором эта сумма достигает максимума. Это вложение и есть условное оптимальное управление на данном шаге, а сам максимум - условный оптимальный выигрыш.

В таблице 13.2 даны результаты условной оптимизации по всем шагам. Таблица построена так: в первом столбце даются значения запаса средств S, с которым мы подходим к данному шагу. Далее таблица разделена на пять пар столбцов, соответственно номеру шага. В первом столбце каждой пары приводится значение

Таблица 13.2

S i=5 i=4 i=3 i=2 i=1
x 5 (S ) W 5 (S ) x 4 (S ) W 4 (S ) x 3 (S ) W 3 (S ) x 2 (S ) W 2 (S ) x 1 (S ) W 1 (S )
1,0 1,2 1,3 1,3 1,3 1,3 1,3 1,3 1,3 1,3 1,0 1,3 1,6 2,3 2,5 2,6 2,7 2,8 2,8 2,8 1,0 1,6 2,1 2,4 2,9 3,4 3,6 3,7 3,9 4,1 1,0 1,6 2,1 2,4 2,9 3,5 4,1 4,6 5,1 5,6 5,6

условного оптимального управления, во втором - условного оптимального выигрыша. Таблица заполняется слева направо, сверху вниз. Решение на пятом - последнем - шаге вынужденное: выделяются все средства;

па всех остальных шагах решение приходится оптимизировать. В результате последовательной оптимизации 5-го, 4-го, 3-го, 2-го и 1-го шагов мы получим полный список всех рекомендаций по оптимальному управлению и безусловный оптимальный выигрыш W* за всю операцию - в данном случае он равен 5,6. В последних двух столбцах таблицы 13.2 заполнена только одна строка, так, как состояние системы перед началом первого шага нам в точности известно:

S 0 = К = 10. Оптимальные управления на всех шагах выделены рамкой. Таким образом, мы получили окончательный вывод: надо выделить первому предприятию две единицы из десяти, второму - пять единиц, третьему - две, четвертому - ни одной, пятому - одну единицу. При этом распределении доход будет максимален и равен 5,6.

Чтобы читателю было понятно, как заполняется таблица 13.2, продемонстрируем это на одном образце расчета. Пусть, например, нам нужно оптимизировать решение х 3 (7)- как поступать на третьем шаге, если мы подошли к нему с запасом средств S = 7, и сколько максимум мы можем выиграть на всех оставшихся

Таблица 13.3

x 7 - x W 4 (7 - x ) +W 4 (7 - x )
1,8 1,7 1,6 1,4 1,2 1,1 0,6 1,0 1,3 1,6 2,3 2,5 2,6 2,7 1,8 2,7 2,9 3,0 3,5 3,2 2,7

шагах, включая третий? Предположим, что все шаги после третьего (4-й и 5-й) уже оптимизированы, т. е. заполнены две первые пары столбцов таблицы 13.2. Найдем x 3 (7) и W 3 (7). Для этого составим вспомогательную табличку (см. таблицу 13.3). В первом ее столбце перечислены все возможные вложения х на третьем шаге, не превосходящие S = 7. Во втором столбце - то, что останется после такого вложения от запаса средств S = 7. В третьем столбце - выигрыш на третьем шаге от вложения средств х в третье предприятие заполняется по столбцу ( таблицы 13.1). В четвертом столбце - оптимальный выигрыш на всех оставшихся шагах (четвертом и пятом) при условии, что мы подошли к четвертому шагу с оставшимися средствами (заполняется по столбцу i = 4 таблицы 13.2). В пятом столбце - сумма двух выигрышей: шагового и оптимизированного дальнейшего при данном вложении х в третий шаг.

Из всех выигрышей последнего столбца выбирается максимальный (в таблице 13.3 он равен W 3 (7) = 3,6, а соответствующее управление х (7) = 2).

Возникает вопрос: а что если во вспомогательной таблице типа 13.3 максимум достигается не при одном x , а при двух или больше? Отвечаем: совершенно все равно, какое из них выбрать; от этого выигрыш не зависит. Вообще, в задачах динамического программирования решение вовсе не должно быть единственным (мы об этом уже упоминали).

3. Задача о загрузке машины. Пользуясь методом динамического программирования, можно с успехом решать ряд задач оптимизации, описанных в главе 3, в частности, некоторые задачи целочисленного программирования. Заметим, что целочисленность решений, так затрудняющая задачи линейного программирования, в данном случае не усложняет, а наоборот, упрощает процедуру (как нам ее упростила целочисленность вложений в предыдущей задаче).

В качестве примера рассмотрим задачу о загрузке машины (мы уже упоминали о пей в предыдущей главе): имеется определенный набор предметов П 1 , П 2 ,..., П n (каждый в единственном экземпляре); известны их веса q 1 , q 2 , ..., q n и стоимости с 1 , с 2 , ..., с n . Грузоподъемность машины равна Q. Спрашивается, какие из предметов нужно взять в машину, чтобы их суммарная стоимость (при суммарном весе Q) была максимальна?