Учимся легко

Учимся легко

» » Алканы гомологический ряд строение изомерия номенклатура. Изомерия алканов

Алканы гомологический ряд строение изомерия номенклатура. Изомерия алканов

Нагревание натриевой соли уксусной кислоты (ацетата натрия) с избытком щелочи приводит к отщеплению карбоксильной группы и образованию метана:

СН3СОNа + NаОН СН4 + Nа2С03

Если вместо ацетата натрия взять пропионат натрия, то образуется этан, из бутаноата натрия - пропан и т. д.

RСН2СОNа +NаОН -> RСН3 + Nа2С03

5. Синтез Вюрца. При взаимодействии галогеналканов с щелочным металлом натрием образуются предельные углеводороды и галогенид щелочного металла, например:

Действие щелочного металла на смесь галогенуглеводородов (например, бромэтана и бромметана) приведет к образованию смеси алканов (этана, пропана и бутана).

Реакция, на которой основан синтез Вюрца, хорошо протекает только с галогеналканами, в молекулах которых атом галогена присоединен к первичному атому углерода.

6. Гидролиз карбидов. При обработке некоторых карбидов, содержащих углерод в степени окисления -4 (например, карбида алюминия), водой образуется метан:

Аl4С3 + 12Н20 = ЗСН4 + 4Аl(ОН)3 Физические свойства

Первые четыре представителя гомологического ряда метана - газы. Простейший из них - метан - газ без цвета, вкуса и запаха (запах «газа», почувствовав который надо звонить по телефону 04, определяется запахом меркаптанов - серусодер-жащих соединений, специально добавляемых к метану, используемому в бытовых и промышленных газовых приборах, для того чтобы люди, находящиеся рядом с ними, могли по запаху определить утечку).

Углеводороды состава от С5Н12 до С15Н32 - жидкости, более тяжелые углеводороды - твердые вещества.

Температуры кипения и плавления алканов постепенно увеличиваются с возрастанием длины углеродной цепи. Все углеводороды плохо растворяются в воде, жидкие углеводороды являются распространенными органическими растворителями.

Химические свойства

1. Реакции замещения. Наиболее характерными для ал-канов являются реакции свободнорадикального замещения, в ходе которых атом водорода замещается на атом галогена или какую-либо группу.

Приведем уравнения наиболее характерных реакций.

Галогенирование:

СН4 + С12 -> СН3Сl + HCl

В случае избытка галогена хлорирование может пойти дальше, вплоть до полного замещения всех атомов водорода на хлор:

СН3Сl + С12 -> HCl + СН2Сl2
дихлорметан хлористый метилен

СН2Сl2 + Сl2 -> HCl + CHCl3
трихлорметан хлороформ

СНСl3 + Сl2 -> HCl + ССl4
тетрахлорметан четыреххлористый углерод

Полученные вещества широко используются как растворители и исходные вещества в органических синтезах.

2. Дегидрирование (отщепление водорода). При пропускании алканов над катализатором (Pt, Ni, А1203, Сг2O3) при высокой температуре (400-600 °С) происходит отщепление молекулы водорода и образование алкена:

СН3-СН3 -> СН2=СН2 + Н2

3. Реакции, сопровождающиеся разрушением углеродной цепи. Все предельные углеводороды горят с образованием углекислого газа и воды. Газообразные углеводороды, смешанные с воздухом в определенных соотношениях, могут взрываться. Горение предельных углеводородов - это свободнора-дикальная экзотермическая реакция, которая имеет очень большое значение при использовании алканов в качестве топлива.

СН4 + 2O2 -> С02 + 2Н2O + 880кДж

В общем виде реакцию горения алканов можно записать следующим образом:


Реакции термического расщепления лежат в основе промышленного процесса - крекинга углеводородов. Этот процесс является важнейшей стадией переработки нефти.

При нагревании метана до температуры 1000 °С начинается пиролиз метана - разложение на простые вещества. При нагревании до температуры 1500 °С возможно образование ацетилена.

4. Изомеризация. При нагревании линейных углеводородов с катализатором изомеризации (хлоридом алюминия) происходит образование веществ с разветвленным углеродным скелетом:


5. Ароматизация. Алканы с шестью или более углеродными атомами в цепи в присутствии катализатора циклизуются с образованием бензола и его производных:

В чем причина того, что алканы вступают в реакции, протекающие по свободнорадикальному механизму? Все атомы углерода в молекулах алканов находятся в состоянии sр 3 -гибридизации. Молекулы этих веществ построены при помощи ковалентных неполярных С-С (углерод-углерод) связей и слабополярных С-Н (углерод-водород) связей. В них нет участков с повышенной и пониженной электронной плотностью, легко поляризуемых связей, т. е. таких связей, электронная плотность в которых может смещаться под действием внешних воздействий (электростатических полей ионов). Следовательно, алканы не будут реагировать с заряженными частицами, так как связи в молекулах алканов не разрываются по гетеролитическому механизму.

Наиболее характерными реакциями алканов являются реакции свободнорадикального замещения. В ходе этих реакций атом водорода замещается на атом галогена или какую-либо группу.

Кинетику и механизм свободнорадикальных цепных реакций, т. е. реакций, протекающих под действием свободных радикалов - частиц, имеющих неспаренные электроны, - изучал замечательный русский химик Н. Н. Семенов. Именно за эти исследования ему была присуждена Нобелевская премия по химии .

Обычно механизм реакции свободнорадикального замещения представляют тремя основными стадиями:

1. Инициирование (зарождение цепи, образование свободных радикалов под действием источника энергии - ультрафиолетового света, нагревания).

2. Развитие цепи (цепь последовательных взаимодействий свободных радикалов и неактивных молекул, в результате которых образуются новые радикалы и новые молекулы).

3. Обрыв цепи (объединение свободных радикалов в неактивные молекулы (рекомбинация), «гибель» радикалов, прекращение развития цепи реакций).

Научные исследования Н.Н. Семенова

Семенов Николай Николаевич

(1896 - 1986)


Советский физик и физикохимик, академик. Лауреат Нобелевской премии (1956). Научные исследования относятся к учению о химических процессах, катализе, цепных реакциях, теории теплового взрыва и горении газовых смесей.

Рассмотрим этот механизм на примере реакции хлорирования метана:

СН4 + Сl2 -> СН3Сl + НСl

Инициирование цепи происходит в результате того, что под действием ультрафиолетового облучения или при нагревании происходит гомолитический разрыв связи Сl-Сl и молекула хлора распадается на атомы:

Сl: Сl -> Сl· + Сl·

Образовавшиеся свободные радикалы атакуют молекулы метана, отрывая у них атом водорода:

СН4 + Сl· -> СН3· + НСl

и превращая в радикалы СН3·, которые, в свою очередь, сталкиваясь с молекулами хлора, разрушают их с образованием новых радикалов:

СН3· + Сl2 -> СН3Сl + Сl· и т. д.

Происходит развитие цепи.

Наряду с образованием радикалов происходит их «гибель» в результате процесса рекомбинации - образования неактивной молекулы из двух радикалов:

СН3· + Сl· -> СН3Сl

Сl· + Сl· -> Сl2

СН3· + СН3· -> СН3-СН3

Интересно отметить, что при рекомбинации выделяется ровно столько энергии, сколько необходимо для разрушения только что образовавшейся связи. В связи с этим рекомбинация возможна только в том случае, если в соударении двух радикалов участвует третья частица (другая молекула, стенка реакционного сосуда), которая забирает на себя избыток энергии. Это дает возможность регулировать и даже останавливать свободнорадикальные цепные реакции.

Обратите внимание на последний пример реакции рекомбинации - образование молекулы этана. Этот пример показывает, что реакция с участием органических соединений представляет собой достаточно сложный процесс, в результате которого, наряду с основным продуктом реакции, очень часто образуются побочные продукты, что приводит к необходимости разрабатывать сложные и дорогостоящие методики очистки и выделения целевых веществ.

В реакционной смеси, полученной при хлорировании метана, наряду с хлорметаном (СН3Сl) и хлороводородом, будут содержаться: дихлорметан (СН2Сl2), трихлорметан (СНСl3), тетрахлорметан (ССl4), этан и продукты его хлорирования.

Теперь попытаемся рассмотреть реакцию галогенирования (например, бромирования) более сложного органического соединения - пропана.

Если в случае хлорирования метана возможно только одно моно-хлорпроизводное, то в этой реакции может образоваться уже два монобромпроизводных:


Видно, что в первом случае происходит замещение атома водорода при первичном атоме углерода, а во втором - при вторичном. Одинаковы ли скорости этих реакций? Оказывается, что в конечной смеси преобладает продукт замещения атома водорода, который находится при вторичном углероде, т. е. 2-бромпропан (СН3-СНВг-СН3). Давайте попытаемся объяснить это.

Для того чтобы это сделать, нам придется воспользоваться представлением об устойчивости промежуточных частиц. Вы обратили внимание, что при описании механизма реакции хлорирования метана мы упомянули радикал метил - СН3·? Этот радикал является промежуточной частицей между метаном СН4 и хлорметаном СН3Сl. Промежуточной частицей между пропаном и 1-бромпропаном является радикал с неспаренным электроном при первичном углероде, а между пропаном и 2-бромпропаном - при вторичном.

Радикал с неспаренным электроном при вторичном атоме углерода (б) является более устойчивым по сравнению со свободным радикалом с неспаренным электроном при первичном атоме углерода (а). Он и образуется в большем количестве. По этой причине основным продуктом реакции бромирования пропана является 2-бром-пропан - соединение, образование которого протекает через более устойчивую промежуточную частицу.

Приведем несколько примеров свободнорадикальных реакций:

Реакция нитрования (реакция Коновалова)

Реакция применяется для получения нитросоединений - растворителей, исходных веществ для многих синтезов.

Каталитическое окисление алканов кислородом

Эти реакции являются основой важнейших промышленных процессов получения альдегидов, кетонов, спиртов непосредственно из предельных углеводородов, например:

СН4 + [О] -> СН3ОН

Применение

Предельные углеводороды, в особенности метан, находят очень широкое применение в промышленности (схема 2). Они являются простым и достаточно дешевым топливом, сырьем для получения большого количества важнейших соединений.

Соединения, полученные из метана, самого дешевого углеводородного сырья, применяют для получения множества других веществ и материалов. Метан используют как источник водорода в синтезе аммиака, а также для получения синтез-газа (смесь СО и Н2), применяемого для промышленного синтеза углеводородов, спиртов, альдегидов и других органических соединений.

Углеводороды более высококипящих фракций нефти используются как горючее для дизельных, турбореактивных двигателей, как основа смазочных масел, как сырье для производства синтетических жиров и т. д.

Приведем несколько промышленно значимых реакций, протекающих с участием метана. Метан используют для получения хлороформа, нитрометана, кислородсодержащих производных. Спирты, альдегиды, карбоновые кислоты могут образовываться при непосредственном взаимодействии алканов с кислородом в зависимости от условий проведения реакций (катализатора, температуры, давления):

Как вы уже знаете, углеводороды состава от С5Н12 до С11Н24 входят в бензиновую фракцию нефти и применяются в основном как горючее для двигателей внутреннего сгорания. Известно, что наиболее ценными компонентами бензина являются изомерные углеводороды, так как они обладают максимальной детонационной устойчивостью.

Углеводороды при контакте с кислородом воздуха медленно образуют с ним соединения - перекиси. Это медленно протекающая свободнорадикальная реакция, инициатором которой является молекула кислорода:

Обратите внимание на то, что гидропероксидная группа образуется при вторичных атомах углерода, которых больше всего в линейных, или нормальных, углеводородах.

При резком повышении давления и температуры, происходящем в конце такта сжатия, начинается разложение этих перекисных соединений с образованием большого числа свободных радикалов, которые «запускают» свободнорадикальную цепную реакцию горения раньше, чем это необходимо. Поршень еще идет вверх, а продукты горения бензина, которые уже успели образоваться в результате преждевременного поджига смеси, толкают его вниз. Это приводит к резкому уменьшению мощности двигателя, его износу.

Таким образом, основной причиной детонации является наличие перекисных соединений, способность образовывать которые максимальна у линейных углеводородов.

Наименьшей детонационной устойчивостью среди углеводородов бензиновой фракции (С5Н14 - С11Н24) обладает к-гептан. Наиболее устойчив (т. е. в наименьшей степени образует перекиси) так называемый изооктан (2,2,4-триметилпентан).

Общепринятой характеристикой детонационной устойчивости бензина является октановое число. Октановое число 92 (например, бензин А-92) означает, что данный бензин обладает теми же свойствами, что и смесь, состоящая из 92% изооктана и 8% гептана.

В заключение можно добавить, что использование высокооктанового бензина дает возможность повысить степень сжатия (давление в конце такта сжатия), что приводит к повышению мощности и КПД двигателя внутреннего сгорания.

Нахождение в природе и получение

На сегодняшнем уроке вы познакомились с таким понятием, как алканы, а также узнали о его химическом составе и методах получения. Поэтому давайте сейчас более подробно остановимся на теме нахождения алканов в природе и узнаем, как и где алканы нашли применение.

Главными источниками для получения алканов являются природный газ и нефть. Они составляют основную часть продуктов от нефтипереботки. Распространенный, в залежах осадочных пород метан, также является газовым гидратом алканов.

Основной составляющей природного газа является метан, но в его составе присутствует и небольшая доля этана, пропана и бутана. Метан можно обнаружить в выделениях угольных пластов, болот и в попутных нефтяных газах.

Также анканы можно получить методом коксования каменного угля. В природе встречаются и так называемые твердые алканы – озокериты, которые представлены в виде залежей горного воска. Озокерит можно обнаружить в восковых покрытиях растений или их семян, а также в составе пчелиного воска.

Промышленное выделение алканов берется из природных источников, которые к счастью пока неисчерпаемые. Их получают методом каталитического гидрирования оксидов углерода. Также метан можно получить в лабораторных условиях, используя метод нагревания ацетата натрия с твердой щелочью или гидролизом некоторых карбидов. Но и также алканы можно получить способом декарбоксилирования карбоновых кислот и при их электролизе.

Применение алканов

Алканы на бытовом уровне, широко применяются во многих сферах деятельности человека. Ведь очень сложно представить нашу жизнь без природного газа. И ни для кого не будет секретом, что основой природного газа является метан, из которого производят технический углерод, используемый при производстве топографических красок и шин. Холодильник, который есть в доме у каждого, также работает благодаря соединениям алканов, применяющихся в качестве хладагентов. А полученный из метана ацетилен используют для сварки и резки металлов.

Теперь вы уже знаете, что алканы используются как топливо. Они присутствуют в составе бензина, керосина, солярового масла и мазута. Кроме этого, они есть и в составе смазочных масел, вазелина и парафина.

В качестве растворителя и для синтеза различных полимеров, широкое применение нашел циклогексан. А в наркозе используют циклопропан. Сквалан, как высококачественное смазочное масло, является компонентом многих фармацевтических и косметических препаратов. Алканы являются сырьем, с помощью которого получают такие органические соединения, как спирт, альдегиды и кислоты.

Парафин является смесью высших алканов, а так как он нетоксичен, то широко используется в пищевой промышленности. Его применяют для пропитки упаковок для молочной продукции, соков, круп и так далее, но в том числе и при изготовлении жевательных резинок. А разогретый парафин используют в медицине при парафинолечении.

Помимо выше сказанного, парафином пропитаны головки спичек, для их лучшего горения, карандаши и из него изготавливают свечи.

С помощью окисления парафина получают кислородосодержащие продукты, в основном органические кислоты. При смешении жидких углеводоpодов с определенным числом атомов углерода получают вазелин, который нашел широкое применение как парфюмерии и косметологии, так и в медицине. Его применяют для приготовления различных мазей, кремов и гелей. А также используют для тепловых процедур в медицине.

Практические задания

1. Запишите общую формулу углеводородов гомологического ряда алканов.

2. Напишите формулы возможных изомеров гексана и назовите их по систематической номенклатуре.

3. Что такое крекинг? Какие виды крекинга вы знаете?

4. Напишите формулы возможных продуктов крекинга гексана.

5. Расшифруйте следующую цепочку превращений. Назовите соединения А, Б и В.

6. Приведите структурную формулу углеводорода С5Н12, образующего при бромировании только одно монобром-производное.

7. На полное сгорание 0,1 моль алкана неизвестного строения израсходовано 11,2 л кислорода (при н. у.). Какова структурная формула алкана?

8. Какова структурная формула газообразного предельного углеводорода, если 11 г этого газа занимают объем 5,6 л (при н. у.)?

9. Вспомните, что вам известно о применении метана, и объясните, почему утечка бытового газа может быть обнаружена по запаху, хотя его составляющие запаха не имеют.

10*. Какие соединения могут быть получены каталитическим окислением метана в различных условиях? Напишите уравнения соответствующих реакций.

11*. Продукты полного сгорания (в избытке кислорода) 10,08 л (н. у.) смеси этана и пропана пропустили через избыток известковой воды. При этом образовалось 120 г осадка. Определите объемный состав исходной смеси.

12*. Плотность по этану смеси двух алканов равна 1,808. При бромировании этой смеси выделено только две пары изомерных монобромалканов. Суммарная масса более легких изомеров в продуктах реакции равна суммарной массе более тяжелых изомеров. Определите объемную долю более тяжелого алкана в исходной смеси.

Алканы - насыщенные (предельные) углеводороды. Представителем этого класса является метан (СН 4 ). Все последующие предельные углеводороды отличаются на СН 2 - группу, которая называется гомологической группой, а соединения - гомологами.

Общая формула - С n H 2 n +2 .

Строение алканов.

Каждый атом углерода находится в sp 3 - гибридизации , образует 4 σ - связи (1 С-С и 3 С-Н ). Форма молекулы в виде тетраэдра с углом 109,5°.

Связь образуется посредством перекрывания гибридных орбиталей, причем максимальная область перекрывания лежит в пространстве на прямой, соединяющей ядра атомов . Это наиболее эффективное перекрывание, поэтому σ-связь считается наиболее прочной.

Изомерия алканов.

Для алканов свойственна изомерия углеродного скелета. Предельные соединения могут принимать различные геометрические формы, сохраняя при этом угол между связями. Например,

Различные положения углеродной цепи называются конформациями. В нормальных условиях конформации алканов свободно переходят друг в друга с помощью вращения С-С связей, поэтому их часто называют поворотными изомерами. Существует 2 основные конформации - «заторможенное» и «заслоненное»:

Изомерия углеродного скелета алканов.

Количество изомеров возрастает с увеличением роста углеродной цепи. Например у бутана известно 2 изомера:


Для пентана - 3, для гептана - 9 и т.д.

Если у молекулы алкана отнять один протон (атом водорода), то получится радикал:

Физические свойства алканов.

В нормальных условиях - С 1 -С 4 - газы, С 5 -С 17 - жидкости, а углеводороды с количеством атомов углерода больше 18 - твердые вещества.

С ростом цепи повышается температура кипения и плавления. Разветвленные алканы имеют более низкие температуры кипения, чем нормальные.

Алканы нерастворимы в воде , но хорошо растворяются в неполярных органических растворителях. Легко смешиваются друг с другом.

Получение алканов.

Синтетические методы получения алканов:

1. Из ненасыщенных углеводородов - реакция «гидрирования» протекает под воздействием катализатора (никель, платина) и при температуре:

2. Из галогенпроизводных - реакция Вюрца : взаимодействие моногалогенаклканов с металлическим натрием, в результате чего получаются алканы с удвоенным числом углеродных атомов в цепи:

3. Из солей карбоновых кислот . При взаимодействии соли с щелочи, получаются алканы, которые содержат на 1 атом углерод меньше по сравнению с исходной карбоновой кислотой:

4. Получение метана. В электрической дуге в атмосфере водорода:

С + 2Н 2 = СН 4 .

В лаборатории метан получают так:

Al 4 C 3 + 12H 2 O = 3CH 4 + 4Al(OH) 3 .

Химические свойства алканов.

В нормальных условиях алканы - химически инертные соединения, они не реагируют с концентрированной серной и азотной кислотой, с концентрированной щелочью, с перманганатом калия.

Устойчивость объясняется прочностью связей и их неполярностью.

Соединения не склонны к реакциях разрыва связи (реакция присоединения), для них свойственно замещение.

1. Галогенирование алканов. Под воздействием кванта света начинается радикальное замещение (хлорирование) алкана. Общая схема:

Реакция идет по цепному механизму, в которой различают:

А) Инициирование цепи:

Б) Рост цепи:

В) Обрыв цепи:

Суммарно можно представить в виде:

2. Нитрование (реакция Коновалова)алканов. Реакция протекает при 140 °С:

Легче всего реакция протекает с третитичным атомом углерода, чем с первичным и вторичным.

3. Изомризацияалканов. При конкретных условиях алканы нормального строения могут превращаться в разветвленные:

4. Крекингалканов. При дейсвии высоких температур и катализаторов высшие алканы могут рвать свои связи, образуя алкены и алканы более низшие:

5. Окислениеалканов. В различных условиях и при разных катализаторах окисление алкана может привести к образованию спирта, альдегида (кетона) и уксусной кислоты. В условиях полного окисления реакция протекает до конца - до образования воды и углекислого газа:

Применение алканов.

Алканы нашли широкое применение в промышленности, в синтезе нефти, топлива и т.д.

В таблице представлены некоторые представители ряда алканов и их радикалы.

Формула

Название

Название радикала

CH3 метил

C3H7 пропил

C4H9 бутил

изобутан

изобутил

изопентан

изопентил

неопентан

неопентил

Из таблицы видно, что эти углеводороды отличаются друг от друга количеством групп - СН2 -.Такой ряд сходных по строению, обладающих близкими химическими свойствами и отличающихся друг от друга числом данных групп называется гомологическим рядом. А вещества, составляющие его называются гомологами.

Гомологи - вещества сходные по строению и свойствам, но отличающиеся по составу на одну или несколько гомологических разностей (- СН2 -)

Углеродная цепь - зигзаг (если n ≥ 3)

σ - связи (свободное вращение вокруг связей)

длина (-С-С-) 0,154 нм

энергия связи (-С-С-) 348 кДж/моль

Все атомы углерода в молекулах алканов находятся в состоянии sр3-гибридизации

угол между связями С-C составляет 109°28", поэтому молекулы нормальных алканов с большим числом атомов углерода имеют зигзагообразное строение (зигзаг). Длина связи С-С в предельных углеводородах равна 0,154 нм (1нм=1*10-9м).

а) электронная и структурная формулы;

б) пространственное строение

4. Изомерия - характерна СТРУКТУРНАЯ изомерия цепи с С4

Один из этих изомеров (н -бутан) содержит неразветвленную углеродную цепь, а другой — изобутан — разветвленную (изостроение).

Атомы углерода в разветвленной цепи различаются типом соединения с другими углеродными атомами. Так, атом углерода, связанный только с одном другим углеродным атомом, называется первичным , с двумя другими атомами углерода - вторичным , с тремя - третичным , с четырьмя - четвертичным .

С увеличением числа атомов углерода в составе молекул увеличиваются возможности для разветвления цепи, т.е. количество изомеров растет с ростом числа углеродных атомов.

Сравнительная характеристика гомологов и изомеров


1. Свою номенклатуру имеют радикалы (углеводородные радикалы)

Алкан

С n H2n+2

Радикал (R)

С n H2n+ 1

НАЗВАНИЕ

Физические свойства

В обычных условиях

С1- С4 - газы

С5- С15 - жидкие

С16 - твёрдые

Температуры плавления и кипения алканов, их плотности увеличиваются в гомологическом ряду с ростом молекулярной массы. Все алканы легче воды, в ней не растворимы, однако растворимы в неполярных растворителях (например, в бензоле) и сами являются хорошими растворителями. Физические свойства некоторых алканов представлены в таблице.

Таблица 2. Физические свойства некоторых алканов

а) Галогенирование

при действии света - hν или нагревании (стадийно - замещение атомов водорода на галоген носит последовательный цепной характер. Большой вклад в разработку цепных реакций внёс физик, академик, лауреат Нобелевской премии Н. Н. Семёнов)

В реакции образуются вещества галогеналканы или С n H 2 n +1 Г

(Г - это галогены F, Cl, Br, I)

CH4 + Cl2 hν → CH3Cl + HCl (1 стадия) ;

метан хлорметан CH3Cl + Cl2 hν → CH2Cl2 + HCl (2 стадия);

дихлорметан

СH2Cl2 + Cl2 hν → CHCl3 + HCl (3 стадия);

трихлорметан

CHCl3 + Cl2 hν → CCl4 + HCl (4 стадия).

тетрахлорметан

Скорость реакции замещения водорода на атом галогена у галогеналканов выше, чем у соответствующего алкана, это связано с взаимным влиянием атомов в молекуле:

Электронная плотность связи С - Cl смещена к более электроотрицательному хлору, в результате на нём скапливается частичный отрицательный заряд, а на атоме углерода - частичный положительный заряд.

На атом углерода в метильной группе (- СН3) создаётся дефицит электронной плотности, поэтому он компенсирует свой заряд за счёт соседних атомов водорода, в результате связь С - Н становится менее прочной и атомы водорода легче замещаются на атомы хлора. При увеличении углеводородного радикала наиболее подвижными остаются атомы водорода у атома углерода ближайщего к заместителю:

CH3 - CH2 - Cl + Cl2 h ν CH3 - CHCl2 + HCl

хлорэтан 1 ,1 -дихлорэтан

Со фтором реакция идёт со взрывом.

С хлором и бромом требуется инициатор.

Иодирование происходит обратимо, поэтому требуется окислитель для удаления HI из рекции.

Внимание!

В реакциях замещения алканов легче всего замещаются атомы водорода у третичных атомов углерода, затем у вторичных и, в последнюю очередь, у первичных. Для хлорирования эта закономерность не соблюдается при T >400˚ C .


б) Нитрование

(реакция М.И. Коновалова, он провёл её впервые в 1888 г)

CH4 + HNO3(раствор ) С CH3NO2 + H2O

нитрометан

RNO2 или С n H2n+1 NO2 ( нитроалкан )

I. АЛКАНЫ (предельные углеводороды, парафины)

    Алканы – алифатические (ациклические) предельные углеводороды, в которых атомы углерода связаны между собой простыми (одинарными) связями в неразветвленные или разветвленные цепи.

Алканы – название предельных углеводородов по международной номенклатуре.
Парафины – исторически сложившееся название, отражающее свойства этих соединений (от лат. parrum affinis – имеющий мало сродства, малоактивный).
Предельными , или насыщенными , эти углеводороды называют в связи с полным насыщением углеродной цепи атомами водорода.

Простейшие представители алканов:


При сравнении этих соединений видно, что они отличаются друг от друга на группу -СН 2 - (метилен ). Добавляя к пропану еще одну группу -СН 2 - , получим бутан С 4 Н 10 , затем алканы С 5 Н 12 , С 6 Н 14 и т.д.

Теперь можно вывести общую формулу алканов. Число атомов углерода в ряду алканов примем за n , тогда число атомов водорода составит величину 2n+2 . Следовательно, состав алканов соответствует общей формуле C n H 2n+2 .
Поэтому часто используется такое определение:

  • Алканы - углеводороды, состав которых выражается общей формулой C n H 2n+2 , где n – число атомов углерода.

II. Строение алканов

  • Химическое строение (порядок соединения атомов в молекулах) простейших алканов – метана, этана и пропана – показывают их структурные формулы. Из этих формул видно, что в алканах имеются два типа химических связей:

    С–С и С–Н .

    Связь С–С является ковалентной неполярной. Связь С–Н - ковалентная слабополярная, т.к. углерод и водород близки по электроотрицательности (2.5 - для углерода и 2.1 - для водорода). Образование ковалентных связей в алканах за счет общих электронных пар атомов углерода и водорода можно показать с помощью электронных формул:

    Электронные и структурные формулы отражают химическое строение , но не дают представления о пространственном строении молекул , которое существенно влияет на свойства вещества.

    Пространственное строение , т.е. взаимное расположение атомов молекулы в пространстве, зависит от направленности атомных орбиталей (АО) этих атомов. В углеводородах главную роль играет пространственная ориентация атомных орбиталей углерода, поскольку сферическая 1s-АО атома водорода лишена определенной направленности.

    Пространственное расположение АО углерода в свою очередь зависит от типа его гибридизации. Насыщенный атом углерода в алканах связан с четырьмя другими атомами. Следовательно, его состояние соответствует sp 3 -гибридизации. В этом случае каждая из четырех sp 3 -гибридных АО углерода участвует в осевом (σ-) перекрывании с s-АО водорода или с sp 3 -АО другого атома углерода, образуя σ-связи С-Н или С-С.

    Четыре σ-связи углерода направлены в пространстве под углом 109 о 28", что соответствует наименьшему отталкиванию электронов. Поэтому молекула простейшего представителя алканов – метана СН 4 – имеет форму тетраэдра, в центре которого находится атом углерода, а в вершинах – атомы водорода:

    Валентный угол Н-С-Н равен 109 о 28". Пространственное строение метана можно показать с помощью объемных (масштабных) и шаростержневых моделей.

    Для записи удобно использовать пространственную (стереохимическую) формулу.

    В молекуле следующего гомолога – этана С 2 Н 6 – два тетраэдрических sp 3 -атома углерода образуют более сложную пространственную конструкцию:

    2. Если в молекулах одинакового состава и одинакового химического строения возможно различное взаимное расположение атомов в пространстве, то наблюдается пространственная изомерия (стереоизомерия) . В этом случае использование структурных формул недостаточно и следует применять модели молекул или специальные формулы - стереохимические (пространственные) или проекционные.

    Алканы, начиная с этана H 3 C–СН 3 , существуют в различных пространственных формах (конформациях ), обусловленных внутримолекулярным вращением по σ-связям С–С, и проявляют так называемую поворотную (конформационную) изомерию .

      Различные пространственные формы молекулы, переходящие друг в друга путем вращения вокруг σ-связей С–С, называют конформациями или поворотными изомерами (конформерами).

    Поворотные изомеры молекулы представляют собой энергетически неравноценные ее состояния. Их взаимопревращение происходит быстро и постоянно в результате теплового движения. Поэтому поворотные изомеры не удается выделить в индивидуальном виде, но их существование доказано физическими методами. Некоторые конформации более устойчивы (энергетически выгодны) и молекула пребывает в таких состояниях более длительное время.

    3. Кроме того, при наличии в молекуле атома углерода, связанного с 4-мя различными заместителями, возможен еще один вид пространственной изомерии - оптическая изомерия .

    Например:

    то возможно существование двух соединений с одинаковой структурной формулой, но отличающихся пространственным строением. Молекулы таких соединений относятся друг к другу как предмет и его зеркальное изображение и являются пространственными изомерами.

    Изомерия этого вида называется оптической, изомеры – оптическими изомерами или оптическими антиподами:


    Молекулы оптических изомеров несовместимы в пространстве (как левая и правая руки), в них отсутствует плоскость симметрии.
    Таким образом,

      оптическими изомерами называются пространственные изомеры, молекулы которых относятся между собой как предмет и несовместимое с ним зеркальное изображение.

    Оптические изомеры имеют одинаковые физические и химические свойства, но различаются отношением к поляризованному свету. Такие изомеры обладают оптической активностью (один из них вращает плоскость поляризованного света влево, а другой - на такой же угол вправо). Различия в химических свойствах наблюдаются только в реакциях с оптически активными реагентами.

    Оптическая изомерия проявляется в органических веществах различных классов и играет очень важную роль в химии природных соединений.

Алканы (парафины или предельные углеводороды) – наиболее простой по элементному составу класс органических соединений. Они состоят из углерода и водорода. Родоначальником этого класса является метан СН 4 . Все остальные углеводороды, относящиеся к алканам, являются членами гомологического ряда метана. Общая формула алканов С n Н 2 n +2

Углерод имеет на внешней оболочке четыре валентных электрона, поэтому он может образовывать с атомами водорода четыре двухэлектронные ковалентные связи:

При переходе к высшим гомологам число изомеров резко возрастает (смотри выше).

Углеродный атом, связанный с одним соседним углеродным атомом, называется первичным , с двумя – вторичным , с тремя – третичным и с четырьмя – четвертичным :

Для названий алканов может использоваться несколько номенклатур : историческая, или тривиальная номенклатура – это сводка исторически устоявшихся названий часто употребимых органических соединений. – рациональная номенклатура. При составлении названия по этой номенклатуре соединение рассматривается как полученное из самого простого представителя ряда в результате замещения в нем водородных атомов на алкильные радикалы.

номенклатура IUPAC

Гомологический ряд , последовательность органических соединений с одинаковыми функциональными группами и однотипным строением, каждый член которой отличается от соседнего на постоянную структурную единицу (гомологическую разность), чаще всего метиленовую группу -СН 2 -. Члены гомологического ряда называют гомологами. В гомологических рядах многие физические свойства закономерно изменяются. Например, температуры кипения в середине ряда соединений с неразветвленной цепью (С 5 -С 14) различаются у соседних гомологов на 20-30°С; гомологической разности -СН 2 -соответствует возрастание теплоты сгорания на 630-640 кДж/моль и молекулярной рефракции на 4,6 для D-линии натрия. У высших членов гомологического ряда эти различия постепенно сглаживаются.

Физические и химические свойства алканов. Методы получения и идентификации алканов. Отдельные представители.

Физические свойства алканов.

Первые четыре члена ряда – метан, этан, пропан и бутан – при комнатных условиях газы. Алканы С 5 –С 15 – жидкие, а С 16 и далее – твердые.

В обычных условиях

Химические свойства алканов

Углеводороды ряда метана при обыкновенной температуре химически весьма инертны. Они не присоединяют водород (отсюда – предельные), не реагируют без инициирования с Cl 2 и Br 2 , не окисляются на холоду такими сильными окислителями, как перманганат калия и хромовая кислота В то же время эти связи сравнительно легко подвергаются гомолитическому разрыву с образованием радикалов. Поэтому для алканов в большей мере свойственны реакции радикального замещения.

– Галоидирование

На свету алканы могут последовательно замещать атомы водорода на атомы галоида, например:

При температуре » 500 °С метан под воздействием азотной кислоты и двуокиси азота нитруется:

– Сульфирование

Серная кислота (олеум) при нагревании медленно сульфирует алканы с третичным атомом углерода:

– Сульфохлорирование

Под действием ультрафиолетового освещения алканы вступают в реакцию замещения со смесью SO 2 + Cl 2:

– Окисление

У изоалканов сравнительно легко окисляется третичная группа СН. Промышленный интерес представляет каталитическое окисление смеси высших предельных углеводородов С 8 – С 18:

– Дегидрирование

При t = 300 °C…400 °С алканы, пропущенные над катализатором теряют два атома водорода и превращаются в алкены:

– Изомеризация

Под действием кислых катализаторов (например, AlCl 3 , H 2 SO 4 и др.) алканы способны к перестройке углеродного скелета:

Способы получения алканов

– Гидрирование ненасыщенных углеводородов

– Из галоидных алкилов (реакция Вюрца, 1870 г.)

– Из карбоновых кислот

– Крекинг и пиролиз алканов нефти:

5. Алкены. Общая характеристика: строение, изомерия, номенклатура .

Гомологический ряд алкенов начинается с этилена. Алкены (олефины, этиленовые углеводороды)– углеводороды, которые содержат в молекуле одну двойную связь. Общая формула – C n H 2n .

Изомерия. Номенклатура

Как и в ряду предельных углеводородов структурная изомерия алкенов начинается с четвертого члена ряда. Однако число изомеров значительно больше. Изомерия олефинов обусловлена строением углеродной цепи, во-вторых – положением двойной связи в цепи и в-третьих – пространственным расположением атомов или групп при углеродах с двойной связью

Называют алкены по различным номенклатурам. В тривиальной номенклатуре к названию соответствующего радикала предельного углеводорода добавляют суффикс –ен: этилен, пропилен, бутилен, изобутилен, амилен и т.д. По рациональной номенклатуре олефины называются как производные этилена. При составлении названия по номенклатуре ИЮПАК в качестве основной цепи соединения выбирается самая длинная углеродная цепочка, включающая двойную связь. За основу названия берется название алкана с заменой окончания -ан на
-ен. Цифрой обозначают номер атома углерода, за которым следует двойная связь. Нумеровать углеродные атомы основной цепи следует с того конца, к которому ближе двойная связь.