Учимся легко

Учимся легко

» » Практическое пособие по химии. Циклические формы моносахаридов, формулы хеуорса Формула фишера глюкозы

Практическое пособие по химии. Циклические формы моносахаридов, формулы хеуорса Формула фишера глюкозы

Оптическая изомерия

Моносахариды являются оптически активными веществами. Они содержат асимметрические атомы углерода. У глюкозы их четыре, у фруктозы – три. В результате этого у моносахаридов имеется большое число стереоизомеров. Количество стереоизомеров глюкозы, имеющей четыре асимметрических атомов углерода, рассчитывается по формуле: N=2n, N = 24 = 16 cтереоизомеров. Из этого количества одна половина оптически деятельных стереоизомеров является антиподами другой половины. Таким образом, 16 стереоизомеров альдогексоз образуют 8 пар антиподов. Например, природному моносахариду Д-глюкозе соответствует антипод L-глюкоза (синтетически полученный).

Представить себе пространственное строение оптических изомеров альдоз удобнее всего, если выводить их из глицеринового альдегида. Он существует в виде двух оптических изомеров (антиподов).

Пространственные конфигурации моносахаридов D- и L-ряды.

Для более быстрого и удобного написания открытых форм моносахаридов Э. Фишер предложил изображать их проекционными формулами. Углеродная цепь изображается вертикальной линией, на концах которой пишут первую и последнюю функциональные группы (альдегидную группу пишут всегда вверху). Группы Н и ОН пишут справа и слева от цепи, в соответствии с их пространственным расположением в молекуле.

Циклические формы моносахаридов

Давно были известны свойства моносахаридов, которые были не связаны со свойствами оксиальдегидов и оксикетонов, например:

– наблюдалась повышенная реакционная способность одной из гидроксильных групп;

– наличие в два раза больше изомеров, чем предсказывает формула Фишера

– наблюдалось явление мутаротации – изменения угла вращения свежеприготовленных растворов и др.

В результате исследований было установлено, что в кристаллическом состоянии моносахариды имеют циклическое строение. В растворах моносахаридов наряду с альдегидными или кетонными формами всегда содержатся циклические полуацетальные формы (оксиформы), причем содержание открытой оксо-формы мало (доли процента).

Циклические формы моносахаридов возникают в результате взаимодействия альдегидной (кетонной) группы с гидроксильной группой у пятого или у четвертого углеродного атома — кислород ОН-группы присоединяется к атому углерода карбонильной группы, а водород ОН-группы присоединяется к атому кислорода карбонильной группы.

Образуются устойчивые циклические полуацетальные формы — пиранозная (шестичленный цикл) либо фуранозная (пятичленный цикл). Эти формы получили название от соответствующих гетероциклических соединений, шестичленные — от пирана (точнее тетрагидропирана), а пятичленные — от фурана (точнее тетрагидрофурана). Гидроксил, образованный на месте бывшей карбонильной группы, называется полуацетальным или гликозидным и отличается по свойствам от спиртовых гидроксилов.

Для указания размера кольца в циклической форме моносахарида две последние буквы названия моносахарида (“оза”) заменяют окончанием “фураноза” в случае пятичленного кольца или “пираноза”- в случае шестичленного кольца, например, глюкопираноза, фруктофураноза, рибофураноза и т.д.

В циклической форме монозы нет альдегидной или кетонной группы, имеются только гидроксильные группы. Эти гидроксилы разные: один гидроксил полуацетальный появился в результате внутримолекулярного взаимодействия карбонильной и спиртовой групп, для сахаров этот гидроксил называют еще гликозидным; остальные гидроксилы спиртовые.

Для более удобного написания и наименования полуацетальных форм моноз Хеуорс предложил рассматривать их как производные гидрированных гетероциклов пирана и фурана:

Моносахариды, имеющие пятичленное кольцо, как у фурана, называют фуранозами. Имеющие шестичленное кольцо относят к производным пирана и называют пиранозами. Перед названием типа цикла пишут начальный слог наименования сахара, например α-D(+)-глюкопираноза, β-L(-)-рибофураноза и т. д.

Шестиугольники (пираны) и пятиугольники (фураны), изображенные в перспективе — цикл лежит в горизонтальной плоскости, связи, расположенные ближе к наблюдателю, изображаются более жирными линиями. Атом кислорода располагается в шестичленном (пиранозном) цикле в правом верхнем углу, в пятичленном (фуранозном) – за плоскостью цикла, углеродные атомы, входящие в цикл, не пишутся, а только нумеруются от кислорода по часовой стрелке. Через атомы углерода проводят вертикальные линии, на концах которых пишут водородные атомы и ОН-группы.

Рассмотрим взаимоотношения проекционных формул Фишера и перспективных формул Хеуорса. Все группы (Н и ОН), расположенные справа в формуле Фишера, пишут под плоскостью цикла, а расположенные слева — над плоскостью цикла, концевая СН2-ОН группа располагается сверху от плоскости молекулы, если моносахарид относится к Д-ряду, и снизу от плоскости, если он относится к L-ряду.

Таким образом, в формулах Хеуорса полуацетальный гидроксил и концевая СН2-ОН группа располагаются у a-аномеров по разные стороны кольца, а у b-аномеров — по одну сторону (кружком обведены полуацетальные гидроксилы).

Аналогично можно осуществить переход от формул Фишера к формулам Хеуорса на примере одного из аномеров фуранозной формы Д-фруктозы:

Цикло-цепные таутомеры моносахаридов

Предыдущая123456789Следующая

По мере изучения свойств моносахаридов выяснилось, что открытые (цепные) формулы не описывают полностью химическое поведение сахаров.

Например, несмотря на наличие в молекуле глюкозы пяти ОН– групп, только одна из них вступает в реакцию со спиртами в присутствии сухого хлористого водорода с образованием гликозидов. Для объяснения подобных противоречий было высказано предположение (1870 г. А. Колли; 1883 г. Б. Толленс), что истинное строение моноз не описывается лишь открытой (цепной) формулой.

Моносахариды образуют в водном растворе таутомерные смеси открытых и циклических форм. В основе их образования лежит внутримолекулярная реакция нуклеофильного присоединения спиртовых групп к альдегидной или кетонной группе:

H+ полуацетальный,

HOR или гликозидный

Гидроксил

полуацеталь

Такой реакции способствует клешневидноя конформация углеродной цепи углевода:

В 1925–30 гг.

У. Хеуорс экспериментально определил размер возможных циклических таутомеров. Он предложил называть пятичленные циклы углеводов фуранозами, а шестичленные – пиранозами как производные фурана и пирана , соответственно:

фуран пиран

Изобразите цикло-цепные таутомеры D-рибозы по Фишеру и Хеуорсу .

Пиранозные формы рибозы образуются путем взаимодействия гидроксильной группы при С5 рибозы с альдегидной группой:

B,D–рибопираноза D–рибоза a,D–рибопираноза

Образование циклической полуацетальной формы приводит к появлению нового хирального центра у первого атома углерода, в результате при такой циклизации получаются два диастереомера, которые отличаются конфигурацией только С1 атома и называются a — и b-аномерами .

В a- форме полуацетальный (гликозидный) гидроксил справа от углеродной цепи молекулы; он расположен с той же стороны, что и гидроксил, определяющий принадлежность углевода к D-ряду.

В b-форме эта группа с противоположной стороны, слева.

Аналогично, только с участием гидроксила при атоме С4, происходит образование фуранозных форм D-рибозы:

a,D–рибопираноза D–рибоза a,D–рибофураноза

(циклическая форма) (открытая форма) (циклическая форма)

Исключение составляют заместители у того углеродного атома, при котором происходит циклизация.

У такого атома углерода необходимо делать циклическую перестановку заместителей (см.

ХОУОРСА ФОРМУЛЫ

рисунок).

a,D –рибопираноза (по Хеуорсу) a, D–рибофураноза (по Хеуорсу)

Цикло-цепная таутомерия моносахаридов – это существование в водном растворе смеси таутомерных форм, способных превращаться друг в друга через открытую таутомерную форму:

a,D-рибопираноза a,D-рибофураноза

b,D-рибопираноза b,D-рибофураноза

Мутаротация сахаров

При растворении кристаллической таутомерной формы углевода в воде наблюдается явление мутаротации.

Мутаротация объясняется тем, что кристаллический циклический таутомер, растворяясь в воде, переходит постепенно через открытую форму во все другие таутомерные формы.При этом угол вращения плоскости поляризованного света будет меняться во времени до достижения равновесия между всеми цикло-цепными таутомерами.

Это изменение во времени угла вращения плоскости поляризованного света в свежеприготовленных растворах сахаров называется мутаротацией.

Конформации моносахаридов

Углеводы в циклической форме существуют в виде неплоских конформаций. Так, для пиранозных форм наиболее энергетически выгодной является конформация «кресла».

В конформации a,D-рибопиранозы таких групп две – в первом и третьем

положениях:

a, D- рибопираноза

Эта форма менее стабильна; ее содержание составляет всего 18 %.

Пятичленные циклы и ациклическая форма содержатся в смеси в меньшей

концентрации.

Эпимеризация

D-фруктоза

Стереоизомеры, отличающиеся конфигурацией одного хирального центра, называются эпимерами, а процесс их взаимного превращения друг в друга в щелочной среде – эпимеризацией.

Предыдущая123456789Следующая

Циклические формы моносахаридов.

Моносахариды открытой формы могут образовывать циклы , т.е.

замыкаться в кольца.

Рассмотрим это на примере глюкозы .

Напомним, что глюкоза является шестиатомным альдегидоспиртом (гексозой).

В её молекуле одновременно присутствует альдегидная группа и несколькогидроксильных групп ОН (ОН — это функциональная группа спиртов).

При взаимодействии между собой альдегидной и одной из гидроксильных групп , принадлежащих одной и той же молекуле глюкозы , посленяя образует цикл , кольцо.

Атом водорода из гидроксильной группы пятого атома углерода переходит в альдегидную группу и соединяется там с кислородом.

Перспективные формулы Хеуорса

Вновь образованная гидроксильная группа (ОН ) называется гликозидной .

По своим свойствам она значительно отличается от спиртовых (гликозных)гидроксильных групп моносахаридов.

Атом кислорода из гидроксильной группы пятого атома углерода соединяется с углеродом альдегидной группы, в результате чего образуется кольцо:

Альфа- и бета-аномеры глюкозы различаются положением гликозидной группы ОН относительно углеродной цепи молекулы.

Мы рассмотрели возникновение шестичленного цикла.

Но циклы, также могут бытьпятичленными .

Это произойдёт в том случае, если углерод из альдегидной группы соединиться с кислородом гидроксильной группы при четвёртом атоме углерода , а не при пятом, как рассматривалось выше. Получится кольцо меньшего размера.

Шетичленные циклы называются пиранозными , пятичленные – фуранозными .

Названия циклов происходят от названий родственных гетероциклических соединений –фурана и пирана .

В названиях циклических форм наряду с названием самого моносахарида указывается «окончание» – пираноза или фураноза , характеризующие размер цикла.

Например: альфа-D-глюкофураноза, бета-D-глюкопираноза и т.д.

Циклические формы моносахаридов термодинамически более устойчивы в сравнении с открытыми формами, поэтому в природе они получили большее распространение.

Глюкоза

Глюкоза (от др.-греч.

γλυκύς — сладкий) (C6H12O6 ) или виноградный сахар –важнейший из моносахаридов ; белые кристаллы сладкого вкуса, легко растворяется в воде.

Глюкозное звено входит в состав ряда дисахаридов (мальтозы, сахарозы и лактозы) иполисахаридов (целлюлоза, крахмал).

Глюкоза содержится в соке винограда, во многих фруктах, а также в крови животных и человека.

Мышечная работа совершается, главным образом, за счёт энергии, выделяющейся при окислении глюкозы .

Глюкоза является шестиатомным альдегидоспиртом:

Глюкоза получается при гидролизе полисахаридов (крахмала и целюлозы ) под действием ферментов и минеральных кислот.

В природе глюкоза образуется растениями в процессе фотосинтеза .

Фруктоза

Фруктоза или плодовый сахар С6Н12О6 моносахарид , спутник глюкозы во многих плодовых и ягодных соках.

Фруктроза в качестве моносахаридного звена входит в состав сахарозы и лактулозы.

Фруктоза значительно слаще глюкозы.

Смеси с ней входят в состав мёда.

По строению фруктоза представляет собой шестиатомный кетоноспирт:

В отличие от глюкозы и других альдоз, фруктоза неустойчива как в щелочных, так и кислых растворах; разлагается в условиях кислотного гидролиза полисахаридов или гликозидов.

Галактоза

Галактоза моносахарид , один из наиболее часто встречающихся в природе шестиатомных спиртов - гексоз.

Галактоза cуществует в ациклической и циклической формах.

Отличается от глюкозы пространственным расположением групп у 4-го атома углерода.

Галактоза хорошо растворима в воде, плохо в спирте.

В тканях растений галактоза входит в состав рафинозы, мелибиозы, стахиозы, а также в полисахариды - галактаны, пектиновые вещества, сапонины, различные камеди и слизи, гуммиарабик и др.

В организме животных и человека галактоза - составная часть лактозы (молочного сахара), галактогена, группоспецифических полисахаридов, цереброзидов и мукопротеидов.

Галактоза входит во многие бактериальные полисахариды и может сбраживаться так называемыми лактозными дрожжами.

В животных и растительных тканях галактоза легко превращается в глюкозу , которая лучше усваивается, может превращаться в аскорбиновую и галактуроновую кислоты.

Олигосахариды. Сахароза.

Олигосахариды – это один из видов полисахаридов .

Олигосахариды представляют собой углеводы, состоящие из нескольких моносахаридных остатков (от греч.

ὀλίγος - немногий).

Как правило, их молекулы содержат от 2 до 10 моносахаридных остатков и имеют относительно небольшую молекулярную массу.

Наиболее распространёнными из олигосахаридов являются дисахариды итрисахариды .

Дисахариды

Молекулы дисахаридов состоят из двух остатков моносахаридов .

Общая формула дисахаридов, как правило, C12H22O11.

Похожая информация:

Поиск на сайте:

Моносахариды: рибоза, дезоксирибоза, глюкоза, фруктоза. Понятие о пространственных изомерах углеводов. Циклические формы моносахаридов

Лекция Углеводы

Этим названием обозначаются широко распространенные в природе вещества. Они возникают в растительных организмах в результате сложной химической реакции, в которой участвуют вода, углекислый газ из воздуха и солнечная энергия, причем реакция происходит с участием зерен хлорофилла, находящегося в зеленой части растений.

Итак, углеводы (сахара) - одна из наиболее важных и распро-страненных групп природных органических соединений.

Общая формула CmH2nOn(m и n ³3).

В растительном организме до 80% (сухого веса), а в животных организмах - до 2% (сухого веса) составляют углеводы.

В организме животных и человека углеводы (сахара) поступа-ют с различными пищевыми продуктами растительного проис-хождения, т.к. сахара не могут синтезироваться в организмах животного происхождения.

В растениях же углеводы образуются в процессе фотосинтеза из воды и углекислого газа (см.

Углеводы имеют разное строение, их можно разделить на две группы: простые и сложные углеводы.

Простыми углеводами (моносахаридами) называются такие соединения, которые не могут гидролизоваться с образованием более простых углеводов.

Сложными углеводами (полисахаридами) называют такие со-единения, которые могут гидролизоваться с образованием про-стых углеводов.

Моносахариды: рибоза, дезоксирибоза, глюкоза, фруктоза.

Понятие о пространственных изомерах углеводов.

Справочник химика 21

Циклические формы моносахаридов

В молекулах моносахаридов может содержаться от трех до девяти атомов углерода. Названия всех групп моносахаридов, а также названия отдельных представителей оканчиваются на -оза. В зависимости от числа атомов углерода в молекуле моноса-хариды делятся на тетрозы, пентозы, гексозы и т.д. Наибольшее значение имеют гексозы и пентозы.

Рибоза и дезоксирибоза

В природе часто встречаются пентозы.

Из них большой инте-рес представляют рибоза и дезоксирибоза, т.к. они входят в состав нуклеиновых кислот.

Название «дезоксирибоза» показывает, что по сравнению с рибозой в ее молекуле на одну-ОН группу меньше.

Молекулы рибозы и дезоксирибозы могут иметь как линей-ное, так и циклическое строение:

Важнейшими представителями гексоз являются глюкоза и фруктоза, на примере которых рассмотрим строение, номенкла-туру, изомерию и свойства моносахаридов.

Строение

Глюкоза и фруктоза являются изомерами и имеют молеку-лярную формулу С6Н12О6.

Строение моносахаридов было установлено с помощью реакций:

1) Восстановления глюкозы йодистым водородом, в результате этой реакции образуется 2-иодгексан.

2) Глюкоза вступает в реакцию с аммиачным раствором оксида серебра, что говорит о наличии в молекуле глюкозы альдегид-ной группы:

(С5Н11О5)СОН+2OH®(C5H11O5)COONH4+2Ag¯+3NH3+H2O

3) Глюкоза окисляется бромной водой в глюконовую кислоту:

(С5Н11О6)СОН+Br2+Н2O®(С5Н11O5)СООН+2HBr

4) При взаимодействии глюкозы с гидроксидом меди происходит окрашивание раствора в синий цвет - это качественная реак-ция для многоатомных спиртов.

Количественные эксперимен-ты показали, что в молекуле глюкозы 5 гидроксильных групп. Таким образом, глюкоза - это пятиатомный альдегидоспирт.

5) В молекуле фруктозы также установлено наличие 5 спиртовых групп, но при энергичном окислении фруктоза образует две оксикислоты с двумя и четырьмя атомами углерода. Такое поведение характерно для кетонов.

Таким образом, фрукто-за - многоатомный кетоноспирт:

Следовательно, моносахариды - это многоатомные альдегидо- или кетоноспирты.

Однако ряд экспериментальных фактов не находит объясне-ния в рамках такого строения моносахаридов: 1) моносахариды не дают некоторые реакции, характерные для альдегидов; в частности, они не образуют бисульфитных соеди-нений при взаимодействии с NaHSO3;

2) при измерении оптической активности свежеприготовленных растворов глюкозы оказалось, что она с течением времени па-дает;

3) при нагревании моносахаридов с метиловым спиртом в присут-ствии HСl выпадает кристаллический осадок гликозида, кото-рый легко гидролизуется с образованием одной молекулы спирта.

Все эти факты нашли объяснение, когда предположили, что каждый моносахарид может существовать в виде несколь-ких таутомерных форм.

В растворе, кроме развернутых цепей, существуют и циклические формы, которые образуются при внутримолекулярном взаимодействии альдегидной группы и гидроксильной группы при пятом атоме углерода:

Наличие циклической формы объясняет все вышеприведен-ные аномалии следующим образом:

1) в растворах преобладают циклические формы моносахаридов, открытые формы находятся в небольших количествах;

2) изменение оптической активности связано с установлением равновесия между открытой и циклической формами.

Образование гликозидов объясняется наличием гликозидного, или полуацетального гидроксила, который отличается большей ре-акционной способностью, чем остальные гидроксиды.

Поэтому он легко взаимодействует со спиртами с образованием гликозидов. Хеуорс предложил изображать циклические формы Сахаров так, чтобы отчетливо были видны и кольцо, и заместители:

Циклические формы моносахаридов могут содержать пять или шесть атомов в цикле.

Сахара с шестичленным циклом назы-ваются пиранозами, например, глюкоза - глюкопираноза; цик-лические формы Сахаров с пятичленным циклом называются фуранозами. Глюкоза с пятичленным циклом - глюкофураноза, а фруктоза с пятичленным циклом - фруктофураноза.

Номенклатура и изомерия моносахаридов Названия моносахаридов содержат греческие названия числа

атомов и окончание -оза (см. выше).

Наличие альдегидной и кетонной группы обозначается прибавлением слов альдоза, кетоза.

Глюкоза - альдогексоза, фруктоза - кетогексоза.

Изомерия обусловлена наличием:

1) альдегидной или кетонной группы;

2) асимметричного атома углерода;

3) таутомерии (т.е. равновесия между разными формами молекулы).

Получение моносахаридов

1) В природе глюкоза и фруктоза (наряду с другими моносахари-дами) образуются в результате реакции фотосинтеза:

Исходя из этого можно сделать вывод, что ряд моносахаридов встречается в природе в свободном виде, например фруктоза и глюкоза содержатся в фруктах, фруктоза - в меде и т.д.

2) Гидролиз полисахаридов.

Например, на производстве глюкозу чаще всего получают гидролизом крахмала в присутствии сер-ной кислоты:

3) Неполное окисление многоатомных спиртов.

4) Синтез из формальдегида в присутствии гидроксида кальция (предложен А.

М. Бутлеровым в 1861 г.):

Физические свойства

Моносахариды представляют собой твердые вещества, спо-собные кристаллизоваться, гигроскопичны, хорошо растворимы в воде. Водные растворы их имеют нейтральную реакцию на лак-мус, большинство - сладкие на вкус.

В спирте растворяются плохо, в эфире нерастворимы.

Глюкоза - бесцветное кристаллическое вещество, сладкое на вкус, хорошо растворимо в воде. Из водного раствора ее выделяют в виде кристаллогидрата С6Н12О6 Н2О.

Химические свойства

Химические свойства моносахаридов обусловлены наличием в их молекулах различных функциональных групп.

Окисление моносахаридов:

(С5Н11O6)СОН+2OH®(C6H11O5)COONH4+2Ag¯+3NH3+H2O

2. Реакция спиртовых гидроксидов:

а) взаимодействие с гидроксидом меди (II) с образованием алкоголята меди (II);

б) образование простых эфиров;

в) образование сложных эфиров при взаимодействии с карбоновыми кислотами - реакция этерификации.

Например, вза-имодействие глюкозы с уксусной кислотой или ее хлорангидридом:

3. Образование гликозидов (см. выше).

4. Брожение.

Брожение - это сложный процесс, при котором происходит расщепление моносахаридов под влиянием раз-личных микроорганизмов. Различают брожение:

а) спиртовое:

Химические свойства глюкозы показаны также в табл.

Применение глюкозы

Глюкоза - ценный питательный продукт. В организме она подвергается сложному биохимическому превращению, при этом высвобождается энергия, которая накапливается в процессе фо-тосинтеза, который протекает ступенчато, и поэтому энергия вы-деляется медленно (см. рис. 51).

Большое значение имеют процессы брожения глюкозы.

На-пример, при квашении капусты, огурцов, скисании молока про-исходит молочнокислое брожение глюкозы, так же как при сило-совании кормов. Широко используется на практике спиртовое брожение глюкозы, например, при производстве пива.

Фруктоза

Фруктоза имеет такую же, как и глюкоза, молекулярную формулу (С6Н12О6), но является не полиоксиальдегидом, а полиоксикетоном.

Молекула фруктозы содержит три асимметричес-ких атома углерода, причем конфигурация у них такая же, как и у соответствующих атомов в молекуле глюкозы. Итак, фрукто-за - изомер и «близкий родственник» глюкозы. Она хорошо рас-творима в воде, имеет сладкий вкус (примерно в 3 раза слаще глюкозы).

Фруктоза также наиболее часто встречается в циклических формах (a- или b-), но, в отличие от глюкозы, в пятичленных.

В водных растворах фруктозы имеет место равновесие:

Фруктоза и глюкоза в больших количествах содержатся в сладких фруктах, пчелином меде.

ПОСМОТРЕТЬ ЕЩЕ:

Α-D-Фруктофураноза

$L(.8)CH2OH|_(x-.7,y1,W+)<`|HO>_(x-1.2)<|OH>_(x-.7,y-1,W-)<_(y-1.4)CH2OH>_(x1.3,y-.7)O_#2|OH

`-<`/wHO>_p<`-dHO>_p:a_pO_p_(A54,d+)-OH;HO_(A60,w-)#a_(A-60)-OH

$L(.8)_(x-.8,y1,W+)_(x-1.4)_(x-.8,y-1,W-)_(x1.5,y-.6)O_#1;$itemColor1(red)OH`/|#1|$itemColor1(red)OH;H$itemColor1(red)O|#2|H;H|#3|$itemColor1(red)OH;H$itemColor1(red)O\|#4|H

CH2OH_(y1.2)C|C<`-HO><-H>|C<`-H><-OH>|C<`-H><_(x2)»»_(y#-1;2)O_(y#2)»»_#2>|CH2OH

Брутто-формула: C6H12O6

Молекулярная масса: 180.156

Химический состав

Синонимы

  • a-D-Фруктофураноза
  • alpha-D-Фруктофураноза
  • α-D-Фруктофураноза
  • альфа-D-Фруктофураноза
  • альфа-Д-Фруктофураноза
  • (2S,3S,4S,5R)-2,5-bis(hydroxymethyl)oxolane-2,3,4-triol(IUPAC)
  • CPD-10723
  • SureCN240001
  • a-D-fructofuranose
  • alpha-D-fructofuranose
  • α-D-fructofuranose

Входит в группы

Моносахариды

Урок 34. Циклические формы моносахаридов

томский государственный университет
кафедра органической химии

D-D- (- :

Haworth) .

присоединением молекулы любого спирта или, вообще говоря, в результате взаимодействия с любым спиртовым гидроксилом, в том числе и другим аномерным гидроксилом.

Типичными гликозидами такого рода являются дисахариды.
Циклические формы галактозы и маннозы:

Правила перехода от линейных форм к циклическим заключаются в том, что группировки, стоящие в линейных формах справа, в циклических формах изображаются под кольцом, а те, что слева- над кольцом:

ДИСАХАРИДЫ
ПОЛИСАХАРИДЫ

Карбонильные формы моносахаридов. Для выяснения строения и стереохимии моносахаридов химикам потребовалось более ста лет. В результате многолетних исследований было установлено, что моносахариды по химической природе являются полиоксиальдегидами или полиоксикетонами. Большинство моносахаридов имеет линейную цепь углеродных атомов. Важнейшими представителями моносахаридов являются гексозы – глюкоза (виноградный сахар) и фруктоза (фруктовый сахар). Обе гексозы являются изомерами и имеют одну молекулярную формулу С 6 Н 12 О 6 . Шесть атомов углерода глюкозы образуют прямую неразветвленную цепь:

Это доказано восстановлением её в 2-иодгексан при действии йодистого водорода:

Наличие альдегидной группы было доказано тем, что к глюкозе, так же как и к альдегидам, присоединяется синильная кислота (Килиани, 1887 г.):

,

где R = С 5 H 11 O 5

Кроме этого, глюкоза дает качественные реакции на альдегидную группу: “серебряного зеркала“ при взаимодействии с [Аg (NH) 2 ]OH и с фелинговой жидкостью. В обоих случаях альдегидная группа окисляется до карбоксильной и образуется глюконовая кислота:

В 1869 г. А.А. Колли установил, что глюкоза реагирует с пятью молекулами уксусного ангидрида, образуя при этом пять сложноэфирных группировок, и поэтому является пятиатомным спиртом:

Фруктоза при восстановлении иодистым водородом также дает 2-иодгексан, что доказывает ее линейное строение. Наличие карбонильной группы можно доказать реакциями взаимодействия с синильной кислотой или с солянокислым гидроксиламином:

Месторасположение карбонильной группы в углеродной цепи доказывается тем, что окисление фруктозы происходит с разрывом углеродной цепи и образованием щавелевой и винной кислот:

Как и глюкоза, фруктоза реагирует с пятью молекулами уксусного ангидрида, образуя пять сложноэфирных группировок, следовательно, она содержит пять гидроксильных групп.

Таким образом, фруктоза представляет собой пятиатомный кетоспирт:

Это так называемые открытые, цепные формы моносахаридов (оксоформы).

Циклические формы моносахаридов. В растворах моносахаридов наряду с альдегидными или кетонными формами всегда содержатся циклические полуацетальные формы (оксиформы), причем содержание открытой формы мало (доли процента). В кристаллическом индивидуальном состоянии все моносахариды (кроме триоз) представляют собой внутренние полуацетали полиоксиальдегидов или полиоксикетонов. Структура полиацеталей аналогична структуре полуацеталей, возникающих при присоединении молекулы спирта к альдегиду:

В случае моносахаридов эта реакция происходит внутримолекулярно с наиболее “удобно” расположенным гидроксилом. Обычно полуацетали неустойчивы, но у моносахаридов полуацетальная форма устойчива, так как образование циклической полуацетальной формы происходит внутримолекулярно. Циклические формы моносахаридов возникают в результате взаимодействия альдегидной (кетонной) группы с гидроксильной группой у пятого или у четвертого углеродного атома. Образуются устойчивые циклические полуацетальные формы – пиранозная (шестичленный цикл) либо фуранозная (пятичленный цикл). Эти формы получили название от соответствующих гетероциклических соединений, шестичленные – от пирана (точнее тетрагидропирана), а пятичленные – от фурана (точнее тетрагидрофурана). Следует отметить, что гидроксил, образованный на месте бывшей карбонильной группы, называется полуацетальным или гликозидным и отличается по свойствам от спиртовых гидроксилов.

Для указания размера кольца в циклической форме моносахарида две последние буквы названия моносахарида («оза») заменяют окончанием «фураноза» в случае пятичленного кольца или «пираноза» – в случае шестичленного кольца.

В циклической форме монозы нет альдегидной или кетонной группы, имеются только гидроксильные группы. Эти гидроксилы разные: один гидроксил полуацетальный появился в результате внутримолекулярного взаимодействия карбонильной и спиртовой групп, для сахаров этот гидроксил называют еще гликозидным; остальные гидроксилы спиртовые, при этом в глюкозе один из них у шестого атома углерода первичный, остальные – вторичные.

Стереохимия. Для углеводов свойственна оптическая изомерия.

1. Открытые формы моносахаридов. В молекулах моносахаридов имеются асимметрические атомы углерода (хиральные центры), что служит причиной существования большого числа стереоизомеров, соответствующих одной и той же структурной формуле.

Проекционные формулы Фишера, D- и L – ряды. Для изображения стереоизомеров удобно пользоваться проекционными формулами Э. Фишера. Для получения проекционной формулы углеродную цепь моносахарида располагают по вертикали с оксогруппой в верхней части цепи, а сама цепь должна иметь форму полукольца, обращенного выпуклостью к наблюдателю. Все асимметрические углеродные атомы находятся в заслоненной конформации, и группы Н и ОН направлены к наблюдателю (рис.2).

Рисунок 2 – Получение проекционной формулы тетрозы (эритрозы).

Так как энантиомеры – это пространственные изомеры, являющиеся зеркальным отражением друг друга, то каждой паре энантиомеров дано одно название и указывается их противоположная конфигурация (D и L ). Например, для глюкозы:

Относительная конфигурация моносахаридов (отношение к D - или L - ряду) определяется по конфигурационному стандарту – глицериновому альдегиду. С конфигурацией его хирального центра сравнивается конфигурация наиболее удаленного от карбонильной группы («концевого») асимметрического атома углерода, имеющего наибольший номер. В альдопентозах таким атомом будет С 4 , а в альдогексозах – С 5 , в кетогексозах – С 5 и т. д. Если у моносахарида эта ОН- группа находится справа, как у D - глицеринового альдегида, то моносахарид относится к D - ряду. Знак вращения плоскости поляризации поляризованного света моносахаридами непосредственно нельзя связать с их принадлежностью к D - и L - ряду, он определяется экспериментально. Так, среди альдопентоз и альдогексоз D -стереохимического ряда имеются как лево-, так и правовращающие соединения. Например, природные фруктоза и глюкоза обозначается: D (–) фруктоза (или раньше D , l фруктоза), т. е. фруктоза обладает левым вращением; D (+) глюкоза (или раньше D ,d глюкоза), т. е. глюкоза обладает правым вращением. D (+) и L (–) глицериновые альдегиды являются родоначальниками генетических рядов сахаров (альдоз). Каждый моносахарид в этом ряду, начиная с глицеринового альдегида, при введении еще одного атома углерода дает два стереоизомера (диастереомера) – (рис. 3). Семейство кетоз (рис. 4) формально можно произвести от дигидроксиацетона путем последовательного наращивания цепи на один атом углерода.

кетотриоза

Рисунок 3 – Генетический D -ряд альдоз

Рисунок 4 – Генетический D -ряд кетоз

Подавляющее большинство природных моносахаридов принадлежит к D -ряду. Каждой альдозе D -ряда соответствует энантиомер L- ряда с противоположной конфигурацией всех (!) центров хиральности.

Как следует из схемы, восемь стереоизомеров Д-альдогексоз имеют одинаковое химическое строение, но отличаются конфигурацией одного или нескольких асимметрических атомов углерода, т. е. являются диастереоизомерами и поэтому каждый из них имеет свое название (глюкоза, манноза, галактоза и т. д.). Альдозы, отличающиеся одна от другой конфигурацией только одного соседнего с карбонильной группой асимметрического атома углерода, называются эпимерами. Так, глюкоза и манноза, рибоза и арабиноза являются эпимерами. Эпимеры – частный случай диастереоизомеров.

Понятие о конформационной изомерии. Для сахаров в циклической форме возможен еще один вид пространственной изомерии – конформационная изомерия, связанная с расположением в пространстве углеродных атомов шестичленного цикла. Однако, если для циклогексана известно всего две конформации – «кресло» и «ванна», то для моносахаридов в пиранозной форме известно 8 конформаций – две креслообразных и шесть типа ванны ввиду присутствия в шестичленном цикле гетероатома – кислорода. Шесть ваннообразных конформаций энергитически менее выгодны и их существование можно не учитывать. Из двух креслообразных конформаций

С1 – изомер более предпочтителен, так как подавляющее число заместителей в нем ориентировано в экваториальном, совпадающем с плоскостью цикла, направлении. Именно в виде С1 – конформации существует большинство моносахаридов, например, для D -глюкопиранозы в этой конформации первичноспиртовая СН 2 ОН -группа и гидроксильные группы занимают экваториальные положения. При этом полуацетальный гидроксил у b -аномера находится в экваториальном, а у a -аномера – в оксиальном положениях. Поэтому b -аномер D -глюкозы преобладает в равновесной смеси над a- аномером:

Аномеры образуются не в равных количествах, а с преобладанием термодинамически более устойчивого диастереоизомера.

Конформационное строение D -глюкопиранозы обьясняет уникальность этого моносахарида. b- D - глюкопираноза – моносахарид с полным экваториальным расположением объемных заместителей. Обусловленная этим высокая термодинамическая устойчивость – основная причина широкой распространенности ее в природе.

Конформационное строение моносахаридов обуславливает формирование пространственного строения длинных полисахаридных цепей, т. е. вторичную структуру.

Наличие в пиранозном цикле атома кислорода определяет ряд дополнительных факторов, влияющих на устойчивость аномеров. Например, при замещении в молекуле D -глюкопиранозы полуацетальной гидроксильной группы на алкоксильную (при образовании гликозидов) более выгодной может стать a- аномерная форма. Стремление алкоксильной группы занять аксиальное положение связано с так называемым аномерным эффектом, который проявляется как результат отталкивания между сближенными в пространстве электронными парами двух атомов кислорода – циклического и входящего в состав алкосиальной группы. В a- аномере такое отталкивание электронных пар отсутствует, т. к. атомы кислорода пространственно удалены.

R-, S- номенклатура моносахаридов. D , L - система обозначений для моносахаридов не вполне универсальна, так как основывается на конфигурации одного из многих центров хиральности. Однако она используется в химии углеводов и лишь в редких случаях заменяется R-, S- номенклатурой.

Например, D -глюкоза получает название (2R ,3S ,4R ,5R )-2,3,4,5,6-пентагидроксигексаналь:

В циклических формах моносахаридов независимо от размера кольца (пиранозное или фуранозное) атом углерода карбонильной группы становится асимметрическим и он также имеет 2 зеркальные конфигурации. Например, для D -глюкозы:

С 1 – новый хиральный центр, этот атом называют аномерным. Две стереоизомерные формы глюкозы отличаются конфигурацией одного хирального центра С 1 и называются a- и b- формами, a- и b- аномерами. У a- аномера конфигурация аномерного центра одинакова с конфигурацией «концевого» хирального центра, определяющего принадлежность к D - или L- ряду, а у b- аномера – противоположна, т. е. эти ОН- группы находятся на противоположных сторонах. Аномерные префиксы a- и b- используют только в сочетании с конфигурационными префиксами (D - и L- ). Но в целом a- и b- аномеры из-за наличия еще нескольких центров хиральности являются не энантиомерами (зеркальными изомерами), а диастерео-изомерами. Циклические формы моносахаридов, следовательно, содержат на один асимметрический атом углерода больше, чем открытые, поэтому у них в два раза больше оптически активных изомеров, т. е. N = 2 5 = 32.

Перспективные формулы Хеуорса. Для изображения циклических форм моносахаридов можно пользоваться более наглядными перспективными формулами Хеуорса. Формулы Хеуорса представляют собой шестиугольники и пятиугольники, изображенные в перспективе – цикл лежит в горизонтальной плоскости, связи, расположенные ближе к наблюдателю, изображаются более жирными линиями. Атом кислорода располагается в пиранозном цикле в правом верхнем углу, в фуранозном - за плоскостью цикла, углеродные атомы, входящие в цикл, не пишутся, а только нумеруются от кислорода по часовой стрелке. Все группы и ОН) , расположенные справа в формуле Фишера, пишут под плоскостью цикла, а расположенные слева – над плоскостью цикла, концевая СН 2 ОН группа располагается сверху от плоскости молекулы, если моносахарид относится к D -ряду, и снизу от плоскости, если он относится к L- ряду.

Таким образом, в формулах Хеуорса полуацетальный гидроксил и концевая СН 2 ОН группа располагаются у a- аномеров по разные стороны кольца, а у b- аномеров – по одну сторону (кружком обведены полуацетальные гидроксилы):

Аналогично можно осуществить переход от формул Фишера к формулам Хеуорса на примере одного из аномеров фуранозной формы D -фруктозы:

Таутомерия моносахаридов в растворах. Характерной особенностью моносахаридов является их ярко выраженная способность к таутомерным превращениям. Углеводы были исторически одними из первых веществ, для которых наблюдалось явление таутомерии. Различают два вида изомерии моносахаридов в растворах:

· кето-енольную;

· кольчато-цепную или оксо-окси-таутомерию.

Кето-енольная таутомерия моносахаридов происходит при действии щелочей и состоит в переходе карбонильной формы (альдегидной или кетонной) в ендиольную с двумя ОН -группами при атомах углерода, связанных двойной связью, т. е. в образовании ендиола общего для эпимерных моносахаридов. Благодаря кето-енольной таутомерии, эпимерные моносахариды могут превращаться друг в друга. Например, в щелочной среде фруктоза претерпевает таутомерное превращение в глюкозу, которая и реагирует с фелинговой жидкостью:

Кольчато-цепная таутомерия моносахаридов заключается в существовании кольчатых (циклических) форм и цепной (т. е. с открытой углеродной цепью) формы моносахарида, находящихся в растворе в динамическом равновесии. Обычно циклические формы моносахаридов преобладают над открытой цепной формой. Например, известно, что в водных растворах глюкоза находится, главным образом, в виде a- и b- глюкопираноз, в меньшей степени – в виде a- и b- глюкофураноз и совсем небольшое количество глюкозы – в виде открытой, альдегидной формы (0,024 %). В целом пиранозные формы резко преобладают над фуранозными формами. В растворах установление равновесия между четырьмя циклическими таутомерами моносахаридов протекает через открытую форму - оксо-форму:

В зависимости от условий реакции и примененных реагентов моносахариды реагируют в одной из таутомерных форм: пиранозной, фуранозной или ациклической, оксо-форме, так как расходование одной из них в ходе реакции сдвигает таутомерное равновесии в сторону реагирующей формы. Например, несмотря на незначительное содержание оксо-формы, глюкоза вступает в реакции, характерные для альдегидной группы. Таутомерия лежит в основе множественности химических свойств моносахаридов. Аналогичные таутомерные превращения происходят в растворах со всеми моносахаридами и большинством известных дисахаридов. Так, для важнейшего представителя кетогексоз D -фруктозы схема таутомерных превращений имеет следующий вид:

Мутаротация. Кольчато-цепная таутомерия моносахаридов является причиной любопытного свойства простых углеводов. В кристаллическом состоянии моносахариды находятся только в циклической форме. В зависимости от условий кристаллизуется либо a-, либо b- форма. Так, при кристаллизации из воды глюкоза получается в виде a- D - глюкопиранозы, а при кристаллизации из пиридина – в виде b- D - глюкопиранозы. После растворения a- D - глюкопиранозы в воде вначале наблюдается характерное для нее значение удельного вращения, равное [a ] = +112,2 0 . Однако при стоянии раствора эта величина постепенно снижается и наконец достигает устойчивого значения +52,5 0 . Это явление получило название мутаротации.

Мутаротация – явление самопроизвольного изменения угла вращения плоскости поляризации или изменение оптической активности при стоянии свежеприготовленного раствора сахара, связаное с тем, что в растворе устанавливается равновесие между циклическими a- и b- пиранозными формами, которые переходят друг в друга в результате раскрытия пиранозного цикла с образованием открытой оксо-формы.

Взаимопревращение a- и b- аномеров друг в друга через промежуточную оксо-форму называется аномеризацией .

Известно, что альдегиды и кетоны реагируют со спиртами, образуя полуацетали и кетали. Циклические полуацетали образуются особенно легко. Для этого необходимыми условиями являются: 1) гидроксил и карбонильная группа должны быть частями одной молекулы; 2) при их взаимодействии может образоваться пяти- или шестичленное кольцо.
Например, 4-гидроксипентаналь образует пятичленный циклический полуацеталь. При этом создается новый стереоцентр при углероде С-1 (все четыре заместителя при С-1 разные):

Подобным образом 5-гидроксигексаналь формирует шестичленный циклический полуацеталь, в котором также генерируется новый стереоцентр при С-1:

Гидроксильная и карбонильная группы содержатся в одной молекуле моносахаридов, поэтому моносахариды существуют почти исключительно в форме циклических полуацеталей.
Циклические проекции Фишера. Размер полуацетального кольца моносахарида сравнивают с гетероциклическими молекулами – пираном и фураном:

Шестичленные полуацетальные кольца обозначают словом «пиран», а пятичленные – «фуран».
При кристаллизации из этанола D-глюкоза дает -D-глюкопиранозу, t пл = 146 °С, удельное оптическое вращение D = +112,2°. Кристаллизация из водного этанола дает -D-глюкопиранозу, t пл = 150 °С, D = +18,7°. Эти - и -изомеры – шестичленные циклические полуацетали – образуются при реакции гидроксила ОН при углероде С-5 с карбонильной группой в положении 1. Новый стереоцентр, возникающий при получении полуацеталя, называют аномерным углеродом . Образующиеся таким образом диастереомеры имеют специальное название – аномеры . Конфигурация аномерного углерода обозначается приставкой , когда его гидроксильная группа находится с той же стороны фишеровской проекции, что и ОН-группа при стереоцентре с высшим номером. При противоположной ориентации этих гидроксилов конфигурация аномерного углерода – .

По данным метода ЯМР 13 С D-глюкозы в водном растворе, существуют: -пираноза (38,8%),
-пираноза (60,9%), -фураноза (0,14%), -фураноза (0,15%), гидрат открытой линейной формы (0,0045%).
Приводим - и -формы глюкофуранозы в сравнении с циклическими формами фруктозы –
-фруктофуранозы и -фруктофуранозы.

В альдозах замыкание цикла возможно за счет 1-го (альдегидного) углерода и гидроксила при 4-м (или 5-м) атоме С, а в кетозах – за счет 2-го (карбонильного) углерода и гидроксила в 5-м или 6-м положении цепи.

Формулы Хеуорса. Альтернативный способ изображения циклических структур моносахаридов известен как проекции Хеуорса и назван так в честь английского химика Уолтера Хеуорса (нобелевский лауреат, 1937 г.). В формулах Хеуорса пяти- и шестичленные циклические полуацетали представляют в виде плоских пяти- или шестиугольников, расположенных как бы перпендикулярно плоскости листа бумаги. Группы, присоединенные к углеродам кольца, располагают над или под плоскостью кольца и параллельно плоскости листа бумаги. В формулах Хеуорса аномерный углерод обычно записывают справа, а полуацетальный кислород – сзади него. Проекции Хеуорса - и -пиранозных форм D-глюкозы показаны ниже.

УПРАЖНЕНИЯ.

1. Что означает понятие «циклические формы углеводов»?

2. Приведите структурные и проекционные формулы Фишера для: а) триозы; б) тетрозы;
в) пентозы.

3. Как по химическим формулам различить L- и D-изомеры (на примере эритрозы)?

4. Укажите ацетальные связи и асимметрические атомы углерода (стереоцентры) в соединениях:

5. Напишите структурные формулы гетероциклов пирана и фурана, указывая каждый атом.

6. Составьте схемы образования циклических полуацетальных форм из:
а) D-треозы; б) D-рибозы (фуранозная и пиранозная формы).

7. Преобразуйте графические формулы соединений а)–в) в фишеровские проекции и сделайте отнесение этих проекций к D- или L-глицеральдегиду:

8. Сколько возможно кетотетроз? Для каждой нарисуйте проекции Фишера.

9. Составьте формулы Хеуорса:

1) -D-глюкопиранозы; 2) -D-глюкофуранозы.

Ответы на упражнения к теме 2

Урок 34

1. Циклические формы углеводов содержат цикл с кислородом в кольце. Обычно это циклический полуацеталь. В его молекуле нет свободной альдегидной группы, зато имеется ацетальная связь. Например, для эритрозы:

3. Чтобы по химическим формулам различить D- и L-изомеры эритрозы, следует представить их в виде проекций Фишера. Ориентация гидроксила вправо при высшем стереоцентре С*-3 означает
D-изомер. Направление группы НО влево от С*-3 свойственно L-изомеру:

4. Ацетальные связи отмечены стрелкой (), а стереоцентры – звездочкой (*):

в) две последовательные перестановки заместителей не изменяют конфигурацию (D или L) при стереоцентре:

8. Возможны две энантиомерные кетотетрозы, для которых проекции Фишера следующие:

9. Формулы Хеуорса:

Диастереомеры – стереоизомеры, молекулы которых не являются зеркальным отображением друг друга.

Моносахариды открытой формы могут образовывать циклы , т.е. замыкаться в кольца.

Рассмотрим это на примере глюкозы .

Напомним, что глюкоза является шестиатомным альдегидоспиртом (гексозой). В её молекуле одновременно присутствует альдегидная группа и несколькогидроксильных групп ОН (ОН - это функциональная группа спиртов).

При взаимодействии между собой альдегидной и одной из гидроксильных групп , принадлежащих одной и той же молекуле глюкозы , посленяя образует цикл , кольцо.

Атом водорода из гидроксильной группы пятого атома углерода переходит в альдегидную группу и соединяется там с кислородом. Вновь образованная гидроксильная группа (ОН ) называется гликозидной .

По своим свойствам она значительно отличается от спиртовых (гликозных)гидроксильных групп моносахаридов.

Атом кислорода из гидроксильной группы пятого атома углерода соединяется с углеродом альдегидной группы, в результате чего образуется кольцо:

Альфа- и бета-аномеры глюкозы различаются положением гликозидной группы ОН относительно углеродной цепи молекулы.

Мы рассмотрели возникновение шестичленного цикла. Но циклы, также могут бытьпятичленными .

Это произойдёт в том случае, если углерод из альдегидной группы соединиться с кислородом гидроксильной группы при четвёртом атоме углерода , а не при пятом, как рассматривалось выше. Получится кольцо меньшего размера.

Шетичленные циклы называются пиранозными , пятичленные – фуранозными . Названия циклов происходят от названий родственных гетероциклических соединений –фурана и пирана .

В названиях циклических форм наряду с названием самого моносахарида указывается «окончание» – пираноза или фураноза , характеризующие размер цикла. Например: альфа-D-глюкофураноза, бета-D-глюкопираноза и т.д.

Циклические формы моносахаридов термодинамически более устойчивы в сравнении с открытыми формами, поэтому в природе они получили большее распространение.

Глюкоза

Глюкоза (от др.-греч. γλυκύς - сладкий) (C 6 H 12 O 6 ) или виноградный сахар –важнейший из моносахаридов ; белые кристаллы сладкого вкуса, легко растворяется в воде.

Глюкозное звено входит в состав ряда дисахаридов (мальтозы, сахарозы и лактозы) иполисахаридов (целлюлоза, крахмал).

Глюкоза содержится в соке винограда, во многих фруктах, а также в крови животных и человека.

Мышечная работа совершается, главным образом, за счёт энергии, выделяющейся при окислении глюкозы .

Глюкоза является шестиатомным альдегидоспиртом:

Глюкоза получается при гидролизе полисахаридов (крахмала и целюлозы ) под действием ферментов и минеральных кислот. В природе глюкоза образуется растениями в процессе фотосинтеза .

Фруктоза

Фруктоза или плодовый сахар С6Н12О6 моносахарид , спутник глюкозы во многих плодовых и ягодных соках.

Фруктроза в качестве моносахаридного звена входит в состав сахарозы и лактулозы.

Фруктоза значительно слаще глюкозы. Смеси с ней входят в состав мёда.

По строению фруктоза представляет собой шестиатомный кетоноспирт:

В отличие от глюкозы и других альдоз, фруктоза неустойчива как в щелочных, так и кислых растворах; разлагается в условиях кислотного гидролиза полисахаридов или гликозидов.

Галактоза

Галактоза - моносахарид , один из наиболее часто встречающихся в природе шестиатомных спиртов - гексоз.

Галактоза cуществует в ациклической и циклической формах.

Отличается от глюкозы пространственным расположением групп у 4-го атома углерода.

Галактоза хорошо растворима в воде, плохо в спирте.

В тканях растений галактоза входит в состав рафинозы, мелибиозы, стахиозы, а также в полисахариды - галактаны, пектиновые вещества, сапонины, различные камеди и слизи, гуммиарабик и др.

В организме животных и человека галактоза - составная часть лактозы (молочного сахара), галактогена, группоспецифических полисахаридов, цереброзидов и мукопротеидов.

Галактоза входит во многие бактериальные полисахариды и может сбраживаться так называемыми лактозными дрожжами. В животных и растительных тканях галактоза легко превращается в глюкозу , которая лучше усваивается, может превращаться в аскорбиновую и галактуроновую кислоты.

Олигосахариды. Сахароза.

Олигосахариды – это один из видов полисахаридов .

Олигосахариды представляют собой углеводы, состоящие из нескольких моносахаридных остатков (от греч. ὀλίγος - немногий).

Как правило, их молекулы содержат от 2 до 10 моносахаридных остатков и имеют относительно небольшую молекулярную массу.

Наиболее распространёнными из олигосахаридов являются дисахариды итрисахариды .

Дисахариды

Молекулы дисахаридов состоят из двух остатков моносахаридов . Общая формула дисахаридов, как правило, C 12 H 22 O 11 .

Моносахариды – это простейшие углеводы. Они не подвергаются гидролизу – не расщепляются водой на более простые углеводы.


Важнейшими из моносахаридов являются глюкоза и фруктоза . Так же хорошо известен другой моносахарид – галактоза , являющаяся частью молочного сахара.


Моносахариды – твёрдые вещества, легко растворимые в воде, плохо – в спирте и совсем не растворимы в эфире.


Водные растворы имеют нейтральную реакцию на лакмус. Большинство моносахаридов обладает сладким вкусом .


В свободном виде в природе встречается преимущественно глюкоза . Она же является структурной единицей многих полисахаридов .


Другие моносахариды в свободном состоянии встречаются редко и, в основном, известны как компоненты олиго- и полисахаридов .


Тривиальные названия моносахаридов обычно имеют окончание «-оза »: глюкоза , галактоза, фруктоза .

Химическое строение моносахаридов.

Моносахариды могут существовать в двух формах: открытой (оксоформе) и циклической :

В растворе эти изомерные формы находятся в динамическом равновесии.

Открытые формы моносахаридов.

Моносахариды являются гетерофунциональными соединениями . В их молекулах одновременно содержатся карбонильная (альдегидная или кетонная) и несколько гидроксильных групп (ОН ).


Другими словами, моносахариды представляют собой альдегидоспирты (глюкоза) или кетоноспирты (фруктоза).


Моносахариды , содержащие альдегидную группу называются альдозами , а содержащие кетонную – кетозами .


Строение альдоз и кетоз в общем виде можно представить следующим образом:


В зависимости от длины углеродной цепи (от 3 до 10 атомов углерода) моносахариды делятся на триозы, тетрозы, пентозы, гексозы, гептозы и т.д. Наиболее распространены пентозы и гексозы .


Структурные формулы глюкозы и фруктозы в их открытых формах выглядят так:


Так глюкоза является альдогексозой , т.е. содержит алдегидную функциональную группу и 6 атомов углерода.


А фруктоза является кетогексозой , т.е. содержит кетогруппу и 6 атомов углерода.

Циклические формы моносахаридов.

Моносахариды открытой формы могут образовывать циклы , т.е. замыкаться в кольца.


Рассмотрим это на примере глюкозы .

Напомним, что глюкоза является шестиатомным альдегидоспиртом (гексозой). В её молекуле одновременно присутствует альдегидная группа и несколько гидроксильных групп ОН (ОН - это функциональная группа спиртов).


При взаимодействии между собой альдегидной и одной из гидроксильных групп , принадлежащих одной и той же молекуле глюкозы , посленяя образует цикл , кольцо.


Атом водорода из гидроксильной группы пятого атома углерода переходит в альдегидную группу и соединяется там с кислородом. Вновь образованная гидроксильная группа (ОН ) называется гликозидной .


По своим свойствам она значительно отличается от спиртовых (гликозных) гидроксильных групп моносахаридов.


Атом кислорода из гидроксильной группы пятого атома углерода соединяется с углеродом альдегидной группы, в результате чего образуется кольцо:


Альфа- и бета-аномеры глюкозы различаются положением гликозидной группы ОН относительно углеродной цепи молекулы.


Мы рассмотрели возникновение шестичленного цикла. Но циклы, также могут быть пятичленными .


Это произойдёт в том случае, если углерод из альдегидной группы соединиться с кислородом гидроксильной группы при четвёртом атоме углерода , а не при пятом, как рассматривалось выше. Получится кольцо меньшего размера.


Шетичленные циклы называются пиранозными , пятичленные – фуранозными . Названия циклов происходят от названий родственных гетероциклических соединений – фурана и пирана .


В названиях циклических форм наряду с названием самого моносахарида указывается «окончание» – пираноза или фураноза , характеризующие размер цикла. Например: альфа-D-глюкофураноза, бета-D-глюкопираноза и т.д.


Циклические формы моносахаридов термодинамически более устойчивы в сравнении с открытыми формами, поэтому в природе они получили большее распространение.


(от др.-греч. γλυκύς - сладкий) (C 6 H 12 O 6 ) или виноградный сахар – важнейший из моносахаридов ; белые кристаллы сладкого вкуса, легко растворяется в воде.


Глюкозное звено входит в состав ряда дисахаридов (мальтозы, сахарозы и лактозы) и полисахаридов (целлюлоза, крахмал).


Содержится в соке винограда, во многих фруктах, а также в крови животных и человека.


Мышечная работа совершается, главным образом, за счёт энергии, выделяющейся при окислении глюкозы .


Является шестиатомным альдегидоспиртом:

Получается при гидролизе полисахаридов (крахмала и целюлозы ) под действием ферментов и минеральных кислот. В природе глюкоза образуется растениями в процессе фотосинтеза .


Или плодовый сахар С6Н12О6 моносахарид , спутник глюкозы во многих плодовых и ягодных соках.


Фруктроза в качестве моносахаридного звена входит в состав сахарозы и лактулозы.


Значительно слаще глюкозы. Смеси с ней входят в состав мёда.


По строению фруктоза представляет собой шестиатомный кетоноспирт:



В отличие от глюкозы и других альдоз, фруктоза неустойчива как в щелочных, так и кислых растворах; разлагается в условиях кислотного гидролиза полисахаридов или гликозидов.


- моносахарид , один из наиболее часто встречающихся в природе шестиатомных спиртов - гексоз.


Cуществует в ациклической и циклической формах.


Отличается от глюкозы пространственным расположением групп у 4-го атома углерода.

Хорошо растворима в воде, плохо в спирте.


В тканях растений галактоза входит в состав рафинозы, мелибиозы, стахиозы, а также в полисахариды - галактаны, пектиновые вещества, сапонины, различные камеди и слизи, гуммиарабик и др.


В организме животных и человека галактоза - составная часть лактозы (молочного сахара), галактогена, группоспецифических полисахаридов, цереброзидов и мукопротеидов.


Входит во многие бактериальные полисахариды и может сбраживаться так называемыми лактозными дрожжами. В животных и растительных тканях галактоза легко превращается в глюкозу , которая лучше усваивается, может превращаться в аскорбиновую и галактуроновую кислоты.