Учимся легко

Учимся легко

» » Аммиачная вода —. Круговорот воды в природе

Аммиачная вода —. Круговорот воды в природе

Вода – это неорганическое соединение, состоящее из кислорода и водорода. В нормальных условиях это бесцветная, прозрачная жидкость, которая не имеет запаха и вкуса. В твердом виде вода называется снегом, льдом или инеем, в газообразном – паром. Примерно 71% всей поверхности планеты покрыт водой. На океаны припадает примерно 96% водных запасов, на остальные 4% припадают озера, ледники, болота и грунтовые воды. По своей природе вода является отличным растворителем и всегда в своем составе содержит растворенные вещества или газы, за исключением дистиллированной воды. Вода является важнейшим источником жизни на всей планете. Поэтому в нашей статье мы попытаемся рассказать вам все об этом удивительном веществе, а главное, какое вещество вода по своей природе и каковы ее химические и физические свойства.

Физические свойства воды

  • При нормальных атмосферных условиях вода сохраняет жидкое состояние, в то же время как остальные водородные соединения схожего плана являются газами. Это явление объясняется особыми свойствами сложения молекул и атомов воды, и присутствующими между ними связями. Атомы кислорода присоединены к атомам водорода, образуя угол почти в 105 градусов, и данная конфигурация сохраняется всегда. Через большую разницу электроотрицательности атомов кислорода и водорода, электронные облака сильно сдвинуты в сторону кислорода. В связи с данной причиной молекула воды считается активным диполем, в котором водородная сторона имеет положительный заряд, а кислородная отрицательный. В результате молекула воды образует связи, разорвать которые довольно сложно и на это потребуются большие затраты энергии.
  • Вода практически не поддается сжиманию. Так, при увеличении атмосферного давления на один бар, вода сжимается лишь на 0.00005 часть, от ее первоначального объема.
  • Структура льда и воды очень схожи. Как во льду, так и в воде, молекулы стараются расположиться в некотором определенном порядке – они хотят образовать структуру, но тепловое движение препятствует этому. Когда вода переходит в твердое состояние, тепловое вращение молекул уже не препятствует структурному образованию, после чего молекулы упорядочиваются, и пустоты между ними увеличиваются, от чего, следовательно, падает плотность. Вот чем объясняется тот момент, что вода – это вещество очень аномальное. Твердое агрегатное состояние воды – лед, может спокойно плавать на поверхности жидкого агрегатного состояния воды. Когда же происходит испарение, наоборот, все связи сразу же разрываются. На разрыв данных связей требуется немаленькое количество энергии, что объясняет наибольшую теплоемкость воды среди всех веществ. Чтобы подогреть литр воды на 1 градус, необходимо потратить около 4 кДж энергии. Благодаря этому свойству вода часто используется в качестве теплоносителя.
  • Вода обладает высоким поверхностным натяжением, уступая в данном показателе лишь ртути. Большая вязкость воды объясняется ее водородными связями, которые мешают молекулам совершать движения с разными скоростями.
  • Вода является хорошим растворителем. Молекулы растворяемого вещества сразу же окружаются молекулами воды. Положительные частицы растворяемого вещества притягиваются атомами кислорода, а отрицательные – атомами водорода. Так как размеры молекул воды достаточно малы, то каждую молекулу растворяемого вещества может окружить сразу большое количество молекул воды.
  • Вода - это вещество, которое имеет отрицательный электрический потенциал поверхности.
  • В чистом виде, вода является хорошим изолятором, но так как в ней зачастую растворены те или иные вещества, соли или кислоты, то в воде всегда находятся отрицательные и положительные ионы. Благодаря этим свойствам вода может проводить электричество.
  • Показатель преломления воды – n=1.33. Но вода прекрасно поглощает инфракрасное излучение, и в связи с этим свойством вода, а точнее водяной пар является парниковым газом. Также вода способна поглотить микроволновое излучение, на чем и основано действие СВЧ печей.

Химические свойства

Те, кто думают, что вода - органическое вещество, сильно ошибаются. Воду образуют два элемента – кислород и водород. Далее рассмотрим основные химические свойства воды.

Вода - одно из самых распространённых веществ в природе (гидросфера занимает 71 % поверхности Земли). Воде принадлежит важнейшая роль в геологии, истории планеты. Без воды невозможно существование живых организмов. Дело в том, что тело человека почти на 63% – 68% состоит из воды. Практически все биохимические реакции в каждой живой клетке - это реакции в водных растворах… В растворах же (преимущественно водных) протекает большинство технологических процессов на предприятиях химической промышленности, в производстве лекарственных препаратов и пищевых продуктов. И в металлургии вода чрезвычайно важна, причём не только для охлаждения. Не случайно гидрометаллургия - извлечение металлов из руд и концентратов с помощью растворов различных реагентов - стала важной отраслью промышленности.


Вода, у тебя нет ни цвета, ни вкуса, ни запаха,
тебя невозможно описать, тобой наслаждаются,
не ведая, что ты такое. Нельзя сказать,
что необходимо для жизни: ты сама жизнь.
Ты исполняешь нас с радостью,
которую не объяснишь нашими чувствами.
С тобой возвращаются к нам силы,
с которыми мы уже простились.
По твоей милости в нас вновь начинают
бурлить высохшие родники нашего сердца.
(А. де Сент-Экзюпери. Планета людей)

Мной написан реферат по теме "Вода — самое удивительное вещество в мире". Я выбрал эту тему потому что — это самая актуальная тема, так как вода это самое важное вещество на Земле без которого не может существовать ни один живой организм и не могут протекать ни какие биологические, химические реакции, и технологические процессы.

Вода — самое удивительное вещество на Земле

Вода — вещество привычное и необычное. Известный советский учёный академик И. В. Петрянов свою научно-популярную книгу о воде назвал "самое необыкновенное вещество в мире". А "Занимательная физиология", написанная доктором биологических наук Б. Ф. Сергеевым, начинается с главы о воде — "Вещество, которое создало нашу планету".
Учёные абсолютно правы: нет на Земле вещества, более важного для нас, чем обыкновенная вода, и в тоже время не существует другого такого вещества, в свойствах которого было бы столько противоречий и аномалий, сколько в её свойствах.

Почти 3/4 поверхности нашей планеты занято океанами и морями. Твёрдой водой — снегом и льдом — покрыто 20% суши. От воды зависит климат планеты. Геофизики утверждают, что Земля давно бы остыла и превратилась в безжизненный кусок камня, если бы не вода. У неё очень большая теплоёмкость. Нагреваясь, она поглощает тепло; остывая, отдаёт его. Земная вода и поглощает, и возвращает очень много тепла и тем самым "выравнивает" климат. А от космического холода предохраняет Землю те молекулы воды, которые рассеяны в атмосфере — в облаках и в виде паров… без воды обойтись нельзя — это самое важное вещество на Земле.
Строение молекулы воды

Поведение воды "нелогично". Получается, что переходы воды из твёрдого состояния в жидкое и газообразное происходит при температурах, намного более высоких, чем следовало бы. Этим аномалиям найдено объяснение. Молекула воды H 2 O построена в виде треугольника: угол между двумя связками кислород — водород 104 градуса. Но поскольку оба водородных атома расположены по одну сторону от кислорода, электрические заряды в ней рассредоточиваются. Молекула воды полярная, что является причиной особого взаимодействия между разными её молекулами. Атомы водорода в молекуле H 2 O, имея частичный положительный заряд, взаимодействуют с электронами атомов кислорода соседних молекул. Такая химическая связь называется водородной. Она объединяет молекулы H 2 O в своеобразные полимеры пространственного строения; плоскость, в которой расположены водородные связи, перпендикулярны плоскости атомов той же молекулы H 2 O. Взаимодействием между молекулами воды и объясняются в первую очередь незакономерно высокие температуры её плавления и кипения. Нужно подвести дополнительную энергию, чтобы расшатать, а затем разрушить водородные связи. И энергия эта очень значительна. Вот почему, кстати, так велика теплоёмкость воды.

Какие связи имеет H 2 O?

В молекуле воды имеются две полярные ковалентные связи Н-О.

Они образованы за счёт перекрывания двух одноэлектронных р — облаков атома кислорода и одноэлектронных S — облаков двух атомов водорода.

В молекуле воды атом кислорода имеет четыре электронных пары. Две из них участвуют в образовании ковалентных связей, т.е. являются связывающими. Две другие электронные пары являются не связывающими.

В молекуле имеются четыре полюс зарядов: два — положительные и два — отрицательные. Положительные заряды сосредоточены у атомов водорода, так как кислород электроотрицательнее водорода. Два отрицательных полюса приходятся на две не связывающие электронные пары кислорода.

Подобное представление о строении молекулы позволяет объяснить многие свойства воды, в частности структуру льда. В кристаллической решётке льда каждая из молекул окружена четырьмя другими. В плоскостном изображении это можно представить так:



На схеме видно, что связь между молекулами осуществляется посредством атома водорода:
Положительно заряженный атом водорода одной молекулы воды притягивается к отрицательно заряженному атому кислорода другой молекулы воды. Такая связь получила название водородной (её обозначают точками). По прочности водородная связь примерно в 15 — 20 раз слабее ковалентной связи. Поэтому водородная связь легко разрывается, что наблюдается, например, при испарении воды.

Структура жидкой воды напоминает структуру льда. В жидкой воде молекулы также связаны друг с другом посредством водородных связей, однако структура воды менее "жёсткая", чем у льда. Вследствие теплового движения молекул в воде одни водородные связи разрываются, другие образуются.

Физические свойства H 2 O

Вода, H 2 O, жидкость без запаха, вкуса, цвета (в толстых слоях голубоватая); плотность 1 г/см 3 (при 3,98 градусах), t пл =0 градусов, t кип =100 градусов.
Разная бывает вода: жидкая, твёрдая и газообразная.
Вода — это единственное вещество в природе, которое в земных условиях существует во всех трёх агрегатных состояниях:

жидком — вода
твёрдом — лёд
газообразном — пар

Советский учёный В. И. Вернадский писал: "Вода стоит особняком в истории нашей планеты. Нет природного тела, которое могли бы сравниться с ней по влиянию на ход основных, самых грандиозных геологических процессов. Нет земного вещества — минерала горной породы, живого тела, которое её бы не заключало. Всё земное вещество ею проникнуто и охвачено".

Химические свойства H 2 O

Из химических свойств воды особенно важны способность её молекул дисоциировать (распадаться) на ионы и способность воды растворять вещества разной химической природы. Роль воды, как главного и универсального растворителя определяется прежде всего полярностью её молекул (смещением центров положительных и отрицательных зарядов) и, как следствие, её чрезвычайно высокий диэлектрической проницаемостью. Разноименные электрические заряды, и в частности ионы, притягиваются друг к другу в воде в 80 раз слабее, чем притягивались бы в воздухе. Силы взаимного притяжения между молекулами или атомами погружённого в воду тела также слабее, чем на воздухе. Тепловому движению в этом случае легче разобщить молекулы. Оттого и происходит растворение, в том числе многих трудно растворимых веществ: капля камень точит…

Диссоциация (распадение) молекул воды на ионы:
H 2 O → H + +OH, или 2H 2 O → H 3 O (ион гидроксия) +ОН
в обычных условиях крайне незначительна; диссоциирует в среднем одна молекула из 500000000. При этом надо иметь в виду, что первое из приведённых уравнений сугубо условное: не может существовать в водной среде лишённый электронной оболочки протон Н. Он сразу соединяется с молекулой воды, образуя ион гидроксия H 3 O. Считают даже, что ассоцианты водных молекул в действительности распадаются на значительно более тяжёлые ионы, такие, например, как
8H 2 O → HgO 4 +H 7 O 4 , а реакция H 2 O → H + +OH - - лишь сильно упрощенная схема реального процесса.

Реакционная способность воды сравнительно невелика. Правда, некоторые активные металлы способны вытеснять из неё водород:
2Na+2H 2 O → 2NaOH+H 2 ,

а в атмосфере свободного фтора вода может гореть:
2F 2 +2H 2 O → 4HF+O 2 .

Из подобных же молекулярных ассоциатов соединений молекул состоят и кристаллы обычного льда. "Упаковка" атомов в таком кристалле не ионная, и лёд плохо проводит тепло. Плотность жидкой воды пи температуре близкой к нулю, больше чем у льда. При 0°C 1гр льда занимает объём 1,0905 см 3 , а 1гр жидкой воды — 1,0001 см 3 . И лёд плавает, оттого и не промерзают насквозь водоёмы, а лишь покрываются ледяным покровом. В этом проявляется ещё одна аномалия воды: после плавления она сначала сжимается, а уж потом, на рубеже 4 градусов, при дальнейшем процессе начинает расширятся. При высоких давлениях обычный лёд можно превратить в так называемый лёд — 1, лёд — 2, лёд — 3, и т. д. — более тяжёлые и плотные кристаллические формы этого вещества. Самый твёрдый, плотный и тугоплавкий пока лёд — 7 — полученный при давлении 3 кило Па. Он плавится при 190 градусах.

Круговорот воды в природе

Организм человека пронизан миллионами кровеносных сосудов. Крупные артерии и вены соединяют друг с другом основные органы тела, более мелкие оплетают их со всех сторон, тончайшие капилляры доходят практически до каждой отдельной клетки. Копаете ли вы яму, сидите ли на уроке или блаженно спите, по ним беспрерывно течёт кровь, связывая в единую систему человеческого организма мозг и желудок, почки и печень, глаза и мускулы. Для чего же нужна кровь?

Кровь доносит до каждой клетки вашего тела кислород из лёгких и питательные вещества из желудка. Кровь собирает отходы жизнедеятельности из всех, даже самых укромных уголков организма, освобождая его от углекислого газа и других ненужных, в том числе опасных веществ. Кровь разносит по всему телу особые вещества — гормоны, которые регулируют и согласовывают работу разных органов. Иными словами, кровь соединяет разные части тела в единую систему, в слаженный и работоспособный организм.

Так же кровеносная система есть и у нашей планеты. Кровь Земли — это вода, а кровеносные сосуды — реки, речушки, ручьи и озёра. И это не просто сравнение, художественная метафора. Вода на Земле играет ту же роль, что и кровь в организме человека, и как недавно заметили учёные, структура речной сети очень похожа на структуру кровеносной системы человека. "Возница природы" — так назвал воду великий Леонардо да Винчи именно она, переходя из почвы в растения, из растений в атмосферу, стекая по рекам с материков в океаны и возвращаясь обратно с воздушными потоками, соединяя друг с другом различные компоненты природы, превращая их в единую географическую систему. Вода не просто переходит из одного природного компонента в другой. Как и кровь, она переносит с собой огромное количество химических веществ, экспортируя их из почвы в растения, с суши в озёра и океаны, из атмосферы на землю. Все растения могут потреблять питательные вещества, содержащиеся в почве, только с водой, где они находятся в растворённом состоянии. Если бы не приток воды из почвы в растения, все травы, даже растущие на самых богатых почвах, погибли бы "от голода", уподобившись купцу, умершему от голода на сундуке с золотом. Вода снабжает питательными веществами и обитателей рек, озёр и морей. Ручьи, весело стекающие с полей и лугов во время весеннего таянья снега или после летних дождей, собирают по пути хранящиеся в почве химические вещества и доносят их до жителей водоёмов и моря, связывая тем самым наземные и водные участки нашей планеты. Самый богатый "стол" образуется в тех местах, где несущие питательные вещества реки впадают в озёра и моря. Поэтому такие участки побережий — эстуарии — отличаются буйством подводной жизни. А кто удаляет отходы, образующиеся в результате жизнедеятельности различных географических систем? Опять же вода, причём в должности акселератора она работает намного лучше кровеносной системы человека, которая лишь частично выполняет эту функцию. Особенно важна очистительная роль воды сейчас, когда человек отравляет окружающую среду отходами городов, промышленных и сельскохозяйственных предприятий. В организме взрослого человека содержится примерно 5-6 кг. крови, большая часть которой беспрерывно циркулирует между разными частями его тела. А сколько воды обслуживает жизнь нашего мира?

Все воды на земле не входящие в состав горных пород, объединяются понятием "гидросфера". Её вес столь велик, что обычно его измеряют не в килограммах или в тоннах, а в кубических километрах. Один кубический километр — это куб с размером каждого ребра в 1 км., постоянно занятого водой. Вес 1 км 3 воды равен 1 млрд. т. На всей земле содержится 1,5 млрд. км 3 воды, что по весу равно примерно 1500000000000000000 тонн! На каждого человека приходится по 1,4 км 3 воды, или по 250 млн. т. Пей, не хочу!
Но к сожалению, всё не так просто. Дело в том, что 94% этого объёма составляют воды мирового океана, не пригодные для большинства хозяйственных целей. Лишь 6% -это воды суши, из которых пресной всего 1/3, т.е. лишь 2% от всего объёма гидросферы. Основная масса этих пресных вод сосредоточена в ледниках. Значительно меньше их содержится под земной поверхностью (в неглубоко расположенных подземных, водных горизонтах, в подземных озёрах, в почвах, а так же в парах атмосферы. На долю рек, из которых в основном и берёт воду человек, приходится совсем мало — 1,2 тыс. км 3 . Совершенно ничтожен общий объём воды, единовременно содержащейся в живых организмах. Так что воды, которую может потреблять человек и другие живые организмы, на нашей планете не так уж и много. Но почему же она не кончается? Ведь люди и животные постоянно пьют воду, растения испаряют её в атмосферу, а реки уносят в океан.

Почему не кончается вода на Земле?

Кровеносная система человека представляет собой замкнутую цепь, по которой беспрерывно течёт кровь, перенося кислород и углекислый газ, питательные вещества и отходы жизнедеятельности. Этот поток никогда не кончается, потому что представляет собой круг или кольцо, а, как известно, "у кольца нет конца". По этому же принципу устроена и водяная сеть нашей планеты. Вода на Земле находится в постоянном круговороте, и убыль её в одном звене сразу же восполняется за счёт поступления из другого. Движущей силой круговорота воды является солнечная энергия и сила тяжести. За счёт круговорота воды все части гидросферы тесно объединены и связывают между собой другие компоненты природы. В самом общем виде круговорот воды на нашей планете выглядит следующим образом. Под действием солнечных лучей вода испаряется с поверхности океана и суши и поступает в атмосферу, причём испарение с поверхности суши осуществляется, как реками и водоёмами, так почвой, растениями. Часть воды сразу возвращается с дождями обратно в океан, а часть переносится ветрами на сушу, где выпадают в виде дождей и снега. Попадая в почву, вода частично впитывается в неё, пополняя запасы почвенной влаги и подземных вод, частично стекает по поверхности в реки и водоёмы почвенная влага частично переходит в растения, которые испаряют её в атмосферу, и частично стекает в реки, только с меньшей скоростью. Реки, питающиеся водой из поверхностных ручьёв и подземных вод, несут воду в Мировой океан, восполняя её убыль. Вода испаряется с его поверхности, снова оказывается в атмосфере, и круговорот замыкается. Такое же движение воды между всеми компонентами природы и всеми участками земной поверхности происходит постоянно и беспрерывно в течение многих миллионов лет.

Надо сказать, что круговорот воды не полностью замкнут. Часть её, попадая в верхние слои атмосферы, разлагается под действием солнечных лучей и уходит в космос. Но эти незначительные потери постоянно восполняются за счёт поступления воды из глубинных слоёв земли при вулканических извержениях. За счёт этого объём гидросферы постепенно увеличивается. по некоторым расчётам 4 млрд. лет назад объём её составлял 20 млн. км 3 , т.е. был в семь тысяч раз меньше современного. В будущем количество воды на Земле, по-видимому, так же будет возрастать, если учесть, что объём воды в мантии Земли оценивается в 20 млрд. км 3 — это в 15 раз больше современного объёма гидросферы. Сравнивая объём воды в отдельных частях гидросферы с притоком воды в них и соседних звеньев круговорота, можно определить активность водообмена, т.е. время, за которое может полностью обновиться объём воды в Мировом океане, в атмосфере или почве. Медленнее всего обновляются воды в полярных ледниках (один раз за 8 тыс. лет). А быстрее всего обновляется речная вода, которая во всех реках на Земле полностью меняется за 11 дней.

Водный голод планеты

"Земля — планета поразительной голубизны"! — восторженно докладывали возвращавшиеся из далёкого Космоса после высадки на Луну американские астронавты. Да и могла ли наша планета выглядеть по-другому, если более 2/3 её поверхности занимают моря и океаны, ледники и озёра, реки, пруды и водохранилища. Но тогда, что означает явление, название которого вынесено в заголовках? Какой же "голод" может быть, если на Земле такое изобилие водоёмов? Да, воды на Земле более чем достаточно. Но нельзя забывать и о том, что жизнь на планете Земля, как считают учёные, впервые появилась в воде, а лишь потом вышли на сушу. Свою зависимость от воды организмы сохранили в ходе эволюции в течение многих миллионов лет. Вода — главный "строительный материал", из которого состоит их тело. В этом легко убедиться, проанализировав цифры следующие таблицы:

Последнее число этой таблицы свидетельствует о том, что в человеке весом 70 кг. содержится 50 кг. воды! Но ещё больше её в человеческом зародыше: в трёхдневном — 97%, в трёхмесячном — 91%, в восьмимесячном — 81%.

Проблема "водного голода" состоит в необходимости недержания определённого количества воды в организме, так как идёт постоянная потеря влаги в ходе различных физиологических процессов. Для нормального существования в условиях умеренного климата человеку необходимо получать с питьём и пищей около 3,5 литров воды в сутки, в пустыне это норма возрастает, как минимум до 7,5 литров. Без пищи человек может существовать около сорока дней, а без воды гораздо меньше — 8 дней. По данным специальных медицинских экспериментов при потере влаги в размере 6-8 % от веса тела человек впадает в полуобморочное состояние, при потере 10% - начинаются галлюцинации, при 12% человек уже не может восстанавливаться без специальной медицинской помощи, а при потере 20% наступает неизбежная смерть. Многие животные хорошо приспосабливаются к недостатку влаги. Наиболее известный и яркий пример этого — "корабль пустыни", верблюд. Он может весьма долго жить в жаркой пустыни, не потребляя питьевой воды и теряя без ущерба для своей работоспособности до 30% первоначального веса. Так, в одном из специальных испытаний верблюд за 8 дней работал под палящим летним солнцем потеряв 100 кг. из 450 кг. своего начального веса. А когда его подвели к воде, он выпил 103 литра и восстановил свой вес. Установлено, что до 40 литров влаги верблюд может получить путём преобразования жира накопленного в его горбу. Совершенно не употребляют питьевую воду такие пустынные животные, как тушканчики и кенгуровые крысы, - им хватает влаги, которую они получают с пищей, и воды, образующейся в их организме при окислении собственного жира, так же как у верблюдов. Ещё больше воды потребляют для своего роста и развития растения. Качан капусты "выпивает" за сутки более одного литра воды, одно дерево в среднем — более 200 литров воды. Конечно, это довольно приблизительная цифра — разные породы деревьев в разных природных условиях расходуют весьма и весьма различное количество влаги. Так растущий в пустыне саксаул тратит минимальное количество влаги, а эвкалипт, в который в некоторых местах называют "дерево-насос", пропускает через себя огромное количество воды, и по этой причине его насаждения используют для осушения болот. Так превратили в процветающую территорию заболоченные малярийные земли Колхидской низменности.

Уже сейчас около 10% населения нашей планеты испытывают недостаток в чистой воде. А если учесть, что 800 млн. дворов в сельской местности, где живёт около 25% всего человечества, не имеет водопровода, то проблема "водного голода" приобретает поистине глобальный характер. Особенно остра она в развивающихся странах, где плохой водой пользуется примерно 90% населения. Недостаток чистой воды становится одним из важнейших факторов, ограничивающих прогрессивное развитие человечества.

Приобретаемые вопросы об охране водных ресурсов

Вода применяется во всех областях хозяйственной деятельности человека. Практически невозможно назвать какой-либо производственный процесс, в котором не использовалась бы вода. В связи с бурным развитием промышленности, ростом населения городов расход воды увеличивается. Первостепенное значение приобретают вопросы охраны водных ресурсов и источников от истощения, а так же от загрязнения сточными водами. Всем известно, какой ущерб наносят сточные воды обитателям водоёмов. Ещё страшней для человека и всего живого на Земле появление в речных водах ядохимикатов, смываемых с полей. Так наличие в воде 2,1 части пестицида (эндрина) на миллиард частей воды достаточно для гибели всех находящихся в ней рыб. Огромную угрозу для человечества представляют сбрасываемые в реки неочищенные стоки населенных пунктов. Эта проблема решается путём сознания таких технологических процессов, в которых отработанная вода не сбрасывается в водоёмы, а после очистки снова возвращается в технологический процесс.

В настоящее время уделяется огромное внимание охране окружающей среды и в частности естественных водоёмов. Учитывая значение этой проблемы, у нас в стране не принимают закон об охране и рациональном использовании природных ресурсов. Конституция гласит: "Граждане России обязаны беречь природу, охранять её богатства".

Виды воды

Бромная вода — насыщенный раствор Br 2 в воде (3,5% по массе Br 2). Бромовая вода — окислитель, бромирующий агент в аналитической химии.

Аммиачная вода — образуется при контакте сырого коксового газа с водой, который концентрируется вследствие охлаждения газа или специально впрыскивается в него для вымывания NH3. В обоих случаях получают так называемую слабую, или скрубберную, аммиачную воду. Дистилляцией этой аммиачной воды с водяным паром и последующей дефлегмацией и конденсацией получают концентрированную аммиачную воду (18 — 20% NH 3 по массе), которую используют в производстве соды, как жидкое удобрение и др.

Cообщение # 7906, написанное 18-04-2019 в 20:52 МСК, удалено.

# 7732 · 15-11-2018 в 17:18 МСК · ip адрес записан · ·

спасибо, для доклада пойдёт)


Образование осадка сводится к взаимодействию ионов Ag + и С L - , так как образуется малодиссоциирующее соединение(краткое ионное уравнение)

Ag + + CL - = AgCL

Полное ионное уравнение имеет вид:

Na + + C
+ Ag + +
= AgCL +Na + +

Реакция с образованием газов

Na 2 S + 2HCL1 = 2NaCL + H 2 S

Для простоты и удобства напишем сразу уравнение реакции в сокращенной форме:

2H + +
=H 2 S

если одно из взятых веществ является трудно растворимым в воде (неэлектролит), то формула этого вещества записывается в молекулярной форме:

Ca 3 P 2 + 6HNO 3 = 3Ca(NO 3) 2 + 2PH 3

Ca 3 P 2 + 6H + = 3Ca 2+ + 2PH 3

Реакция с образованием слабых электролитов.К слабым электролитам относятся вещества со степенью диссоциации меньше 2%, например вода, слабые кислоты, трудно растворимые основания соли и др.

Пример1. Ca(HCO 3 ) 2 + 2HBr = CaBr 2 +2H 2 O + 2CO 2

HC+ H + = H 2 O + CO 2

Пример2. 2CrOHSO 4 +H 2 SO 4 = Cr 2 (SO 4 ) 3 + 2H 2 O

CrOH 2+ + H + = Cr 3+ + H 2

Тема:Гидролиз солей

Гидролиз соли - это реакция обмена ионов соли с ионами воды.

При гидролизе смещается равновесие диссоциации воды вслед­ствие связывания одного из ионов в слабый электролит.

При связывании ионов Н + в растворе накапливаются ионы
, реакция среды будет щелочная, а при связывании ионов
накапливаются ионы Н + - среда кислая.

Разберем случаи гидролиза, пользуясь понятиями «слабый» и «сильный» электролит.

I. Соль образована сильным основанием и сильной кислотой (гидролизу не подвергается). При растворении в воде в присутст­вии индикатора лакмуса нитрата калия окраска лакмуса не из­меняется. Уравнение реакции в молекулярной и ионной формах имеет вид:

KNO 3 +H 2 O
KOH+HNO 3

K = +N+HOH
K + +O
+H + +N

Среда нейтральная, так как ионы Н + и ОН" не связываются дру­гими зонами в слабый электролит.

П. Соль образована сильным основанием и слабой кислотой (гидролиз протекает по аниону). Это имеет место при гидролизе соли
. При диссоциации ионы соли
и
взаимодей­ствуют с ионами Н + и
из воды. При этом ацетат-ионы (
) связываются с ионами водорода + ) в молекулы сла­бого электролита - уксусной кислоты (СН 3 СООН) , а ионы
накапливаются в растворе, сообщая ему щелочную реак­цию, так как ионы К + не могут связать ионы
(КОН яв­ляется сильным электролитом).

Уравнения гидролиза соли СН 3 СООК будут иметь следующий вид:

в молекулярной форме

в ионной форме

в сокращенной ионной форме

Соль образована слабым основанием и сильной кислотой (гидролиз протекает по катиону). Это имеет место при гидролизе соли NH 4 C 1 (NH 4 OH - слабое основание, НС1 - сильная кислота), Отбросим ион
, так как он с катионом воды дает сильный элей тролит, тогда в сокращенной ионной форме уравнение гидролиза примет следующий вид:

В молекулярной форме:

Ионы OH - связываются в слабый электролит, а ионы H + накапливаются – среда кислая.

Соль образована основанием и слабой кислотой(гидролиз протекает по катиону аниону). Это имеет место при гидролизе соли CH 3 COONH 4 . Запишем уравнение в ионной форме:

Образуется слабое основание и слабая кислота. Степень диссоциация которых приблизительно одинакова. Поэтому при наличии гидролиза среда будет приблизительно нейтральная.

тема: Неметаллы

Общая характеристика неметаллов. Число неметаллов, известных в природе, по сравнению с металлами относительно невелико. Их размещение в периодической системе химических элементов Д. И. Менделеева показано в таблице 5.

Из таблицы 5 видно, что элементы - неметаллы в основном расположены в правой верхней части периодической системы химических элементов Д. И. Менделеева. Так как в периодах постепенно увеличиваются заряды ядер атомов элементов и уменьшаются атомные радиусы, а в главных подгруппах с увеличением порядков номера элемента атомные радиусы резко возрастают, то становиться понятным, почему атомы неметаллов сильнее притягивают внешние электроны по сравнению с атомами металлов. Таким образом, у неметаллов преобладают окислительные свойства, т. е. способность присоединять электроны. Особо ярко эти свойства важны у неметаллов VII и VI групп главных подгрупп 2-го и 3-го периодов. Самый сильный окислитель – фтор. Окислительные способности элементов – неметаллов зависят от численного значения электроотрицательности и увеличиваются в следующем порядке:

Si, B, H, P, C, S, I, N, Cl, O, F

Такая же закономерность в изменении окислительных свойств характерна для соответствующих простых веществ. Ее можно наблюдать в реакциях указанных неметаллов с водородом и металлами. Так, фтор более энергично реагирует с водородом и металлами:

Кислород реагирует менее энергично:

Фор как самый активный неметалл в химических реакциях вообще не проявляет восстановительных свойств, т. е. фтор не способен отдавать электроны.

Кислород же в соединение с фтором (

) проявляет положительную степень окисления, т. е. может быть восстановителем.

Восстановительные свойства, хотя и в значительно более слабой степени по сравнению с металлами, проявляют и все остальные элементы – неметаллы и соответствующие им простые вещества, причем эти свойства постепенно возрастают от кислорода к кремнию:

O, Cl, N, I, S, C, P, H, B, Si

Например, хлор непосредственно с кислородом не соединяется, но косвенным путем можно получить оксид хлора , в которых хлор проявляет положительную степень окисления. Азот, как вам известно (II), при высокой температуре непосредственно соединяется с кислородом и проявляет при этом восстановительные свойства:

Еще энергичнее с кислородом реагирует сера:

причем сера примерно в равной степени проявляет как восстановительные, так и окислительные свойства. Так, при нагревании паров серы с водородом происходит реакция:

Тема:Металлы.

Чистые металлы в твердом состоянии - это кристаллы, в кото­рых частицы вещества расположены в определенном геометричес­ком порядке, образуя кристаллическую решетку, в узлах которой находятся положительно заряженные ионы и нейтральные атомы, а между ними перемещаются свободные электроны.

Атомы в кристаллической решетке металлов расположены очень близко друг к другу и их внешние электроны могут переме­щаться не только вокруг одного атома, а вокруг многих. Таким об­разом, внешние электроны свободно перемещаются по всему метал­лу» образуя так называемый «электронный газ».

Существование свободных электронов в металлах подтвержда­ется тем, что металлы обладают большой электрической проводи­мостью, при нагревании все металлы испускают поток свободных электронов.

Все металлы, за исключением ртути, при обычных условиях, твердые вещества. В компактном состоянии (в виде пластинки, слитка) для металлов характерен металлический блеск из-за отра­жения света от их поверхности. В тонкоизмельченном состоянии металлический блеск сохраняют только магний и алюминий, по­рошки остальных металлов черного или темно-серого цвета.

Большинство металлов имеют белый серебристый цвет, не прозрачны (так как почти все они в одинаковой мере поглощают лучи длинных и коротких волн света). Цезий и золото - желтого цвета, медь - желто-красного.

В технике металлы принято делить на группы:

по цвету - черные (железо, хром, марганец и их сплавы); цветные - все остальные;

по плотности - легкие - плотность меньше 5 г/см 8 (литий, калий, кальций, алюминий и др.); тяжелые - плотность больше 5 г/см 3 (олово, свинец, ртуть, железо и др.). Самым легким металлом является литий (пл. 0,53), самым тяжелым - осмий (пл. 22,5);

по температуре плавления - легкоплавкие - т. пл. 350. °С и ниже (свинец 327 °С, олово 232 °С, натрий 98 °С, калий 63 °С, цезий 28 °С и др.); тугоплавкие - т. пл. выше 350 °С (железо 1539 °С, хром 1875 °С). Самый тугоплавкий металл вольфрам, т. пл. 3380 °С. 4

Важными физическими свойствами металлов являются электрическая проводимость и теплопроводность, которые обусловлены наличием во всех металлах свободных электронов.

Наибольшую электрическую проводимость имеет серебро, затем медь, золото, хром, алюминий, магний.

Из механических свойств для металлов характерны пла­стичность, ковкость, тягучесть:

пластичность - это свойство металлов деформироваться без трещин, под действием определенной нагрузки;

ковкость - это свойство металлов деформироваться без трещин под влиянием сжатия при температуре ниже температуры плавле­ния металла;

тягучесть -способность металлов вытягиваться в нить.

Металлы с малой тягучестью хрупки, а металлы с большой тягу­честью устойчивы на разрыв.

Наибольшей пластичностью, ковкостью и тягучестью обладает золото: из него можно изготовить пластинки толщиной 0,003 мм и вытягивать в проволоку, невидимую невооруженным глазом. В наи­меньшей степени этими качествами обладают висмут и марганец.

Общим, присущим исключительно металлам, химическим свой­ством является способность только отдавать электроны, превра­щаясь в свободные, положительно заряженные ионы:

Способность отдавать электроны выражена у металлов по-раз­ному. Мерой прочности связи электронов в атомах является энергия ионизации. Наименьшей энергией ионизации обладают щелочные металлы, поэтому они являются энергичными восстановителями.

Восстановительными свойствами металлов обусловлена их спо­собность вступать в реакции с различными окислителями: неметал­лами, кислотами, солями менее активных металлов.

Названия всех соединений металлов с неметаллами оканчивают­ся на -ид (оксид, хлорид, нитрид, сульфид и т. д.).

1. Металлы взаимодействуют с неметаллами:

а) большинство металлов хорошо реагируют с кислородом, да­вая оксиды:

б) легко соединяются с галогенами, образуя галогениды:

2 Fe + 3 Cl 2 = 2 FeCl 3

в) с азотом металлы образуют нитриды:

г) при определенных условиях металлы взаимодействуют с се­рой, образуя сульфиды:

д) с водородом взаимодействуют непосредственно только щелоч­ные и щелочно-земельные металлы, образуя гидриды:

П

о степени легкости отдачи электронов в растворах металлы располагают в ряд (ряд стандартных электродных потенциалов)

Уникальные особенности водных растворов

Водный раствор представляет собой раствор, который взаимодействует с водой. Что делает воду существенной, так как она может позволить веществам растворяться и / или диссоциировать на ионы внутри нее.

Электролиты

Вода обычно представляет собой растворитель, содержащийся в водном растворе, где растворителем является вещество, которое растворяет растворенное вещество. Растворённое вещество представляет собой вещество или соединение, растворенное в растворителе. Раствор имеет меньшее количество частиц, чем растворитель, где частицы находятся в случайном движении. Интересно, что водные растворы с ионами в некоторой степени проводят электричество. Чистая вода с очень низкой концентрацией ионов не может проводить электричество. Когда растворенное вещество диссоциирует в воде с образованием ионов, его называют электролитом из-за того, что раствор является хорошим электрическим проводником. Когда никакие ионы не образуются или содержание ионов невелико, растворенное вещество является неэлектролитом. Неэлектролиты не проводят электричество или проводят его в очень малой степени.

В водном растворе сильный электролит считается полностью ионизированным или диссоциированным в воде, то есть он растворим. Сильные кислоты и основания обычно являются сильными электролитами. Тогда слабый электролит считается не полностью диссоциированным, поэтому он все еще содержит целые соединения и ионы в растворе. Слабые кислоты и основания обычно являются слабыми электролитами. Другими словами, сильные электролиты имеют лучшую тенденцию подавать ионы в водный раствор, чем слабые электролиты, и поэтому сильные электролиты создают водный раствор, который является лучшим проводником электричества.

Пример

MgCl 2 в воде:

M g C l 2 → M g 2 + (a q ) + 2 C l − (a q )

Ионное соединение полностью диссоциирует с образованием ионов в воде, поэтому он является сильным электролитом.

Теперь давайте посмотрим на слабый электролит:

H C 2 H 3 O 2 (a q ) ⇌ H + (a q ) + C 2 H 3 O 2 − (a q )

В этой ситуации ионное соединение, (HC 2 H 3 O 2), лишь частично диссоциирует, что выражается двойными стрелками в реакции. Это означает, что реакция обратима и никогда не заканчивается. HC 2 H 3 O 2 в этой ситуации лишь частично диссоциирует, что выражается двойными стрелками в реакции. Это означает, что реакция обратима и никогда не заканчивается.

He \ (H ^ + \) катион является протоном, который взаимодействует с молекулами \ (H_2O \), в которые он погружен. Взаимодействие называется H + H +. Катион является протоном, который взаимодействует с молекулами H 2 OH 2 O, погруженным в. Это взаимодействие называется гидратацией. Фактический ион Н + не существует в водном растворе. Это ион гидроня, \ (H_3O ^ + \), который взаимодействует с водой, создает дополнительные виды, такие как \ (H_5O_2 ^ + \), \ (H_9O_4 ^ + \) и \ (H_7O_3 ^ + \). \ (H_3O ^ + \) можно просто описать как гидратацию одного H H3O + H3O +, который взаимодействует с водой для создания дополнительных видов, таких как H 5 O + 2H 5 O 2 + , H 9 O + 4H 9 O 4 + и H 7 O + 3H 7 O 3 + . H 3 O + H 3 O + можно просто описать как гидратацию одной H + и одной молекулы воды. Для неэлектролитов все, что нужно сделать, это написать молекулярную формулу, потому что не происходит никакой реакции или диссоциации. Одним из примеров неэлектролита является сахар: записывается как \ (C_6H_ {12} O_6 (aq) \). C6H12O6 (водн.) C6H12O6 (водн.).

Концентрации ионов

В водном растворе количество ионов вида связано с количеством молей этого вида на концентрацию вещества в водном растворе. Молярность — это число молей растворенного вещества (n), деленного на общий объем (V) решения: (n), деленный на общий объем (V) решения:

Молярность или концентрация могут быть представлены путем размещения растворенного вещества в скобках () для концентрации ионов хлорида. для концентрации Хлорид-ионы.

Реакции осаждения

Реакции осаждения происходят, когда катионы и анионы в водном растворе объединяются с образованием нерастворимого ионного твердого вещества, называемого осадком. Независимо от того, происходит ли такая реакция, можно определить, используя правила растворимости для обычных ионных твердых тел. Поскольку не все водные реакции образуют осадки, перед определением состояния продуктов и написанием чистого ионного уравнения необходимо проконсультироваться с правилами растворимости. Способность прогнозировать эти реакции позволяет ученым определять, какие из ионов присутствуют в растворе, и позволяет отраслям создавать химические вещества путем извлечения компонентов из этих реакций.

Свойства осадков


схема образования осадка в растворе.

Осадки представляют собой нерастворимые ионные твердые продукты реакции, образующиеся, когда определенные катионы и анионы объединяются в водном растворе. Определяющие факторы образования осадка могут меняться. Некоторые реакции зависят от температуры, например, от растворов, используемых для буферов, тогда как другие зависят только от концентрации раствора. Твердые вещества, полученные в реакциях осаждения, представляют собой кристаллические твердые вещества и могут суспендироваться по всей жидкости или падать на дно раствора. Оставшаяся жидкость называется супернатантной жидкостью. Два компонента смеси (осадок и супернатант) могут быть разделены различными способами, такими как фильтрация, центрифугирование или декантирование.

Реакции осаждения и двойной замены

Использование правил растворимости требует понимания того, как реагируют ионы. Большинство реакций осаждения являются реакциями с одной заменой или реакциями с двойной заменой. Реакция двойной замены происходит, когда два ионных реагента диссоциируют и связывают с соответствующим анионом или катионом из другого реагента. Ионы заменяют друг друга на основе их зарядов как катион или анион. Это можно рассматривать как «коммутаторы». То есть два реагента, каждый из которых «теряет» своего партнера и формирует связь с другим партнером.

Реакция с двойной заменой конкретно классифицируется как реакция осаждения, когда рассматриваемое химическое уравнение происходит в водном растворе, и один из образованных продуктов является нерастворимым. Ниже приведен пример реакции осаждения:

Оба реагента являются водными и один продукт является твердым. Поскольку реагенты являются ионными и водными, они диссоциируют и поэтому растворимы. Тем не менее, существует шесть рекомендаций по растворимости, которые используются для прогнозирования того, какие молекулы нерастворимы в воде. Эти молекулы образуют твердый осадок в растворе.

Правила растворения

  1. Соли, образованные катионами группы 1 и катионами NH + 4 NH + 4 , являются растворимыми. Существуют некоторые исключения для некоторых солей Li + .
  2. Растворимы ацетаты (C 2 H 3 O-2C 2 H 3 O 2 —), нитраты (NO — 3 NO 3 —) и перхлораты (ClO — 4 ClO 4 —).
  3. Бромиды, хлориды и иодиды растворимы.
  4. Сульфаты (SO 2 — 4SO 4 2-) растворимы, за исключением сульфатов, образованных с Ca 2+ Ca 2+ , Sr 2+ Sr 2+ и Ba 2+ Ba 2+ .
  5. Соли, содержащие серебро, свинец и ртуть (I), нерастворимы.
  6. Карбонаты (CO 2- 3 CO 2- 3), фосфаты (PO 3- 4 PO 4 3-), сульфиды, оксиды и гидроксиды (OH — OH —) нерастворимы. Исключение составляют сульфиды, образованные катионами и гидроксидами группы 2, образованными кальцием, стронцием и барием.

Если в правилах указывается, что ион растворим, то он остается в форме водного иона. Если ион нерастворим в соответствии с правилами растворимости, он образует твердое вещество с ионом из другого реагента. Если показано, что все ионы в реакции растворимы, то реакция осаждения не происходит.

Ионные уравнения

Чтобы понять определение чистого ионного уравнения, напомним уравнение для реакции двойной замены. Поскольку эта конкретная реакция представляет собой реакцию осаждения, состояния материи могут быть назначены каждой переменной паре:

Первым шагом к написанию чистого ионного уравнения является отделение растворимых (водных) реагентов и продуктов в их соответствующие катионы и анионы. Осадки не диссоциируют в воде, поэтому твердое вещество не должно разделяться. Полученное уравнение выглядит так:

В приведенном выше уравнении на обеих сторонах уравнения присутствуют А + и Д — ионы. Они называются зрительными ионами, поскольку они остаются неизменными в течение всей реакции. Поскольку они проходят через неизмененное уравнение, их можно устранить, чтобы показать чистое ионное уравнение:

Чистое ионное уравнение показывает только реакцию осаждения. Чистое ионное уравнение должно быть сбалансировано с обеих сторон не только с точки зрения атомов элементов, но и с точки зрения электрического заряда. Реакции осаждения обычно представлены исключительно чистыми ионными уравнениями. Если все продукты являются водными, чистое ионное уравнение не может быть записано, потому что все ионы нейтрализуются как зрительные ионы. Поэтому реакция осаждения не происходит.

Практические проблемы

Напишите чистое ионное уравнение для реакций потенциального двойного смещения. Не забудьте включить состояния материи и сбалансировать уравнения.

1. Независимо от физического состояния продуктами этой реакции являются Fe(OH) 3 и NaNO3. Правила растворимости предсказывают, что NaNO 3 растворима, поскольку все нитраты растворимы. Однако Fe(OH) 3 нерастворим, поскольку гидроксиды нерастворимы, и Fe не является одним из катионов, что приводит к исключению. После диссоциации ионное уравнение выглядит следующим образом:

Отмена зрительных ионов оставляет чистое ионное уравнение.

Раствором называется твердая или жидкая гомогенная система, состоящая из двух или более компонентов, относительные количества которых могут изменяться в широких пределах.

Наиболее важный вид растворов - водные растворы, которые имеют значение для промышленности и обеспечения биохимических процессов в природе.

Однородность растворов делает их сходными с химическими соединениями, непостоянство состава приближает их к механическим смесям, таким образом можно сказать, что растворы занимают промежуточное положение между механическими смесями и химическими соединениями.

Образование водных растворов сопровождается изменением электрического момента диполя молекулы воды, их пространственной переориентацией, разрывом водородных связей.

Молекулы не электролитов образуют в структуре воды большие полости, энергия, необходимая для их образования, выделяется при разрыве водородных связей между молекулами воды.

Образование таких структур сопровождается выделением теплоты, так как энергия взаимодействия между молекулами не электролита и воды больше энергии взаимодействия между молекулами воды. Способствуя разрушению структуры воды, образование гидратов вызывает повышение температуры замерзания раствора. На этом свойстве водных растворов не электролитов основан газгидратный способ опреснения воды (пример гидратообразования в газовых скважинах и газопроводах).

При попадании в воду неполярных достаточно больших молекул не электролитов происходит разрыв водородных связей между молекулами воды, а новые связи с растворенным веществом не образуются, поэтому подобные соединения в воде не растворяются (углеводороды с длинной цепочкой).

В водных растворах электролитов происходит гидратация ионов, которая заключается во взаимодействии его ионов с молекулами воды и образовании гидратных оболочек вокруг них, а также в изменении теплового движения молекул воды.

При малой концентрации электролита в водном растворе могут сохраняться участки воды с ненарушенной структурой. В концентрированных растворах электролитов нет свободного растворителя - он весь входит в зону действия ионов, поэтому свойства разбавленных и концентрированных растворов одного и того же вещества различны.

Растворы, при концентрации электролита более 2 моль/л по структуре напоминают расплавленный кристалл электролита. Если в разбавленных растворах искажается структура воды ионами электролита, то концентрированные растворы можно представить как электролит, структура которого нарушена растворителем.

Примером взаимодействия ионов электролита с водой является электрострикция - уменьшение общего объема растворителя и электролита при взаимном смешении.

Продуктами взаимодействия растворителя с растворенными веществами являются сольваты , а процесс их образования называется сольватацией.

Частным случаем сольватации является гидратация - взаимодействие растворенных веществ с водой, в результате которого образуются гидраты. Молекулы воды при гидратации не разрушаются, гидраты же в большинстве своем неустойчивы, однако некоторые из них способны удерживать воду даже в твердом кристаллическом состоянии, например глауберова соль Na 2 SO 4 10 Н 2 О, медный купорос Cu SO 4 5 Н 2 О, железный купорос FeSO 4 7H 2 О. Такие вещества получили название кристаллогидратов. По своим свойствам гидраты отличаются от безводных соединений.