Учимся легко

Учимся легко

» » Описание деления соматических клеток хордовых животных. Половые и соматические клетки

Описание деления соматических клеток хордовых животных. Половые и соматические клетки

Организация клеток во времени

1.2.4.2. Способы деления соматических клеток

Существует два основных способа разделения соматических клеток: митоз и амітоз.

Митоз (от греч. - нить) - косвенный, или митотическое деление является преобладающим типом разделения еукаріотичних соматических клеток и присущ всем багатоклітинним организмам. При этом происходит точное равномерное распределение наследственного материала. В результате митоза каждая дочерняя клетка получает полный набор хромосом со строгим количеством ДНК и за их укладом идентична материнской клетке. Амітоз (от греч. ά - отрицание и μίτος - нить) преобладает у некоторых одноклеточных организмов. Это также способ деления соматических клеток, но на івідміну от митоза, прямое разделение інтерфазного ядра клетки происходит путем простой перетяжки перепонкой. При амітозі распределение наследственного материала между дочерними клетками может быть равномерным или неравномерным. Вследствие этого образуются или одинаковые или неодинаковые по размером клетки. Поэтому такие клетки наследственно неполноценные.

Митоз. Митоз наступает после интерфазы и условно делится на следующие фазы: 1) профаза, 2) метафаза, 3) анафаза, 4) телофаза. На рис. 1.74. приведена общая схема различных фаз митоза.

Рис. 1.74. Схема митоза:

1-центріоля; 2 - ядрышко; 3 - хромосомы; 4 - ранняя профаза; 5 - поздняя профаза; 6 - метафаза; 7 - ранняя анафаза; 8 - поздняя анафаза; 9 - ранняя телофаза.

Профаза (от. греч. πρα - к, и греч. φάσις - появление) - начальная фаза митоза. Характеризуется тем, что ядро увеличивается в размерах, и с хроматинової сетки, в результате спіралізації и укорочение, хромосомы из длинных, тонких, невидимых ниток в конце профази становятся короткими, толстыми и размещаются в виде видимого клубка. Хромосомы сокращаются, стовщуються и состоят из двух половинок - хроматид. Хроматиды обвиваются друг вокруг друга, удерживаются попарно с помощью центромеры. Профаза завершается исчезновением ядрышки, центріолі расходятся к полюсам с образованием фигуры веретена. Из белка тубулина формируются микротрубочки - нити веретена. Вследствие растворение ядерной мембраны хромосомы размещаются в цитоплазме. К центромер прикрепляются нити веретена с обеих полюсов.

Метафаза (от греч. μετά - - между, после) начинается движением хромосом в направлении к экватору. Постепенно хромосомы (каждая состоит из двух хроматид) располагаются в плоскости экватора, образуют так называемую метафазну пластинку. В животных клетках на полюсах вокруг центріоль заметны зірчастоподібні фигуры. В этой фазе можно подсчитать число хромосом в клетке. Набор генетического материала составляет 2п4с.

Метафазну пластинку используют в цитогенетических исследованиях для определения числа и формы хромосом.

В анафазе (от греч. άνά - вверх) сестринские хроматиды отходят друг от друга, разделяется соединяющий их центромерна участок. Все центромеры делятся одновременно. Каждая хроматида с отдельной центромерою становится дочерней хромосомой и по нитям веретена начинает двигаться к одному из полюсов. Набор генетического материала составляет 2п2с.

Телофаза (от. греч. τέλος - конец) - заключительная стадия митоза. Обратная относительно профази. Хромосомы, которые достигли полюсов, состоящие из одной нити, становятся тонкими, длинными и невидимыми в световой микроскоп. Они испытывают деспіралізації, образуют сетку інтерфазного ядра. Формируется ядерная оболочка, появляется ядрышко. В это время исчезает митотический аппарат и происходит цитокінез - разделение цитоплазмы с образованием двух дочерних клеток. Набор генетического материала составляет 2п2с.

Частота митоза в различных тканях и в разных организмах резко отличная. Например, в красном костном мозге человека ежесекундно происходит 10 млн. митозов.

В настоящее время точно не известно, какие факторы побуждают клетку до митоза, но считают, что в этом существенную роль играет соотношение объемов ядра и цитоплазмы (ядерно-цитоплазматичне соотношение). Увеличение объема клетки связано с синтезом белков, нуклеиновых кислот, липидов и других химических компонентов клетки. Поэтому наступает момент, когда поверхность ядра недостаточна для обеспечения обмена веществ между ядром и цитоплазмой, необходимых для дальнейшего роста. Деление клетки значительно увеличивает поверхность как самой клетки, так и ее ядра, не увеличивая при этом их объема; поэтому считают, что фактор, который ограничивает ядерно-цитоплазматичне соотношение, каким-то образом побуждает клетку к митотического деления.

Биологическое значение митоза. Митоз - наиболее распространенный способ репродукции клеток животных, растений, простейших. Это основа роста и вегетативного размножения всех эукариот - организмов, которые имеют ядро. Основная его роль заключается в точном воспроизведении клеток, обеспечении равномерного распределения хромосом материнской клетки между возникающими из нее двумя дочерними клетками и поддержании постоянства числа и формы хромосом во всех клетках растений и животных. Митоз способствует росту организма в эмбриональном и постембріональному периодах, копирования генетической информации и образование генетически равноценных клеток. Поэтому организмы, которые размножаются вегетативно (грибы, водоросли, простейшие, много растений) образуют большое количество идентичных особей, или клонов. Клонирование возможно в некоторых многоклеточных, способных восстанавливать целый организм из части тела: кишечнополостных, червей. Клонирование позвоночных происходит только на ранних стадиях эмбриогенеза. Так, у животных и человека образуются монозиготні близнецы с одной оплодотворенной яйцеклетки в результате ее митотического разделения. За счет митоза все функционально устаревшие клетки организма заменяются новыми. Этот разделение лежит в основе процесса регенерации - восстановлению утраченных тканей.

Амітоз. Амітоз происходит путем деления ядра, а впоследствии и цитоплазмы. Во время амітозу ядрышко удлиняется, перешнуровується, а затем вытягивается и ядро. В некоторых случаях в ядре возникает перегородка, что делит его на две части. Деление ядра иногда сопровождается разделением цитоплазмы (рис. 1.75).


Рис. 1.75. Амітоз. Размножение амебы:

а - 0 мин; б - 6 мин; в - 8 мин; г - 13 мин; д - 18 мин; - 21 мин.

Различают несколько форм амітозу: равномерное, когда образуется два равных ядра; неравномерное, когда образуются неравные ядра; фрагментация, когда ядро распадается на много мелких ядер одинаковой или разной величины.

Таким образом, амітоз - это разделение, что происходит без спіралізації без образования хромосом и веретена деления. Или происходит предварительный синтез ДНК перед началом амітозу и как она распределяется между дочерними ядрами - неизвестно. Иногда при разделении определенных клеток митоз чередуется с амітозом.

Амітоз - это своеобразный тип разделения, что иногда наблюдается при нормальной жизнедеятельности клетки, а в основном при нарушениях функции, часто под влиянием облучения или воздействия других вредных факторов. Он присущ високодиференційованим клеткам. Амітоз по сравнению с митозом встречается реже и играет второстепенную роль в клеточном делении подавляющего большинства живых организмов.

Деление соматической клетки и ее ядра (митоз) сопровождается сложными многофазными трансформациями хромосом: 1) в процессе митоза происходит удвоение каждой хромосомы на основе комплементарной репликации молекулы ДНК с образованием двух сестринских нитевидных копий (хроматид), соединенных в области центромеры; 2) в последующем сестринские хроматиды разъединяются и эквивалентно распределяются по ядрам дочерних клеток. В результате в делящихся соматических клетках поддерживается идентичность хромосомного набора и генетического материала.

Стадии митоза.

Процесс митоза принято подразделять на четыре основные фазы: профазу, метафазу, анафазу и телофазу . Так как он непрерывен, смена фаз осуществляется плавно - одна незаметно переходит в другую.

В профазе увеличивается объем ядра, и вследствие спирализации хроматина формируются хромосомы. К концу профазы видно, что каждая хромосома состоит из двух хроматид. Постепенно растворяются ядрышки и ядерная оболочка, и хромосомы оказываются беспорядочно расположенными в цитоплазме клетки. Центриоли расходятся к полюсам клетки. Формируется ахроматиновое веретено деления, часть нитей которого идет от полюса к полюсу, а часть - прикрепляется к центромерам хромосом. Содержание генетического материала в клетке остается неизменным (2n2хр).

В метафазе хромосомы достигают максимальной спирализации и располагаются упорядоченно на экваторе клетки, поэтому их подсчет и изучение проводят в этот период. Содержание генетического материала не изменяется (2n2хр).

В анафазе каждая хромосома «расщепляется» на две хроматиды, которые с этого момента называются дочерними хромосомами. Нити веретена, прикрепленные к центромерам, сокращаются и тянут хроматиды (дочерние хромосомы) к противоположным полюсам клетки. Содержание генетического материала в клетке у каждого полюса представлено диплоидным набором хромосом, но каждая хромосома содержит одну хроматиду (2nlxp).

В телофазе расположившиеся у полюсов хромосомы деспирализуются и становятся плохо видимыми. Вокруг хромосом у каждого полюса из мембранных структур цитоплазмы формируется ядерная оболочка, в ядрах образуются ядрышки. Разрушается веретено деления. Одновременно идет деление цитоплазмы. Дочерние клетки имеют диплоидный набор хромосом, каждая из которых состоит из одной хроматиды (2n1хр).

25 . Половые клетки человека, их строение. Типы строения яйцеклеток.

Половые клетки (гаметы) - специализированные клетки, при помощи которых происходит половое размножение. Зрелые половые клетки, в отличие от клеток тела, называемых соматическими, имеют половинный набор хромосом, характерный для данного вида. Сокращение числа хромосом происходит в процессе мейоза и восстанавливается при оплодотворении.

Строение сперматозоида . Сперматозоид - это мужская половая клетка (гамета). Он обладает способностью к движению, чем в известной мере обеспечивается возможность встречи разнополых гамет. Размеры сперматозоида микроскопические: длина этой клетки у человека составляет 50-70 мкм.

По морфологии сперматозоиды резко отличаются от всех других клеток, но все основные органеллы в них имеются. Каждый сперматозоид имеет головку, шейку, промежуточный отдел и хвост в виде жгутика. Почти вся головка заполнена ядром, которое несет наследственный материал в виде хроматина. На переднем конце головки располагается акросома, которая представляет собой видоизмененный комплекс Гольджи. Здесь происходит образование гиалуронидазы - фермента, который способен расщеплять мукополисахариды оболочек яйцеклетки, что делает возможным проникновение сперматозоида внутрь яйцеклетки. В шейке сперматозоида расположена митохондрия, которая имеет спиральное строение. Она необходима для выработки энергии, которая тратится на активные движения сперматозоида по направлению к яйцеклетке. Большую часть энергии сперматозоид получает в виде фруктозы. На границе головки и шейки располагается центриоль. На поперечном срезе жгутика видны 9 пар микротрубочек, еще 2 пары есть в центре. Жгутик является органоидом активного движения. В семенной жидкости мужская гамета развивает скорость, равную 5 см/ч. При электронной микроскопии сперматозоида обнаружено, что цитоплазма головки имеет не коллоидное, а жидкокристаллическое состояние. Этим достигается устойчивость сперматозоида к неблагоприятным условиям внешней среды (например, к кислой среде женских половых путей). Установлено, что оболочка сперматозоида имеет специфические рецепторы, которые узнают химические вещества, выделяемые яйцеклеткой. Поэтому сперматозоиды человека способны к направленному движению по направлению к яйцеклетке (это называется положительным хемотаксисом). При оплодотворении в яйцеклетку проникает только головка сперматозоида, несущая наследственный аппарат, а остальные части остаются снаружи.

Яйцеклетка - крупная неподвижная клетка, обладающая запасом питательных веществ. Размеры женской яйцеклетки составляют 150-170 мкм.

Яйцеклетка имеет оболочки, которые выполняют защитные функции, препятствуют проникновению в яйцеклетку более одного сперматозоида, способствуют имплантации зародыша в стенку матки и определяют первичную форму зародыша. Яйцеклетка обычно имеет шарообразную или слегка вытянутую форму, содержит набор тех типичных органелл, что и любая клетка. Как и другие клетки, яйцеклетка отграничена плазматической мембраной, но снаружи она окружена блестящей оболочкой, состоящей из мукополисахаридов (получила свое название за оптические свойства). Блестящая оболочка покрыта лучистым венцом, или фолликулярной оболочкой, которая представляет собой микроворсинки фолликулярных клеток. Она играет защитную роль, питает яйцеклетку.Яйцеклетка лишена аппарата активного движения. За 4-7 суток она проходит по яйцеводу до полости матки расстояние, которое примерно составляет 10 см. Для яйцеклетки характерна плазматическая сегрегация. Это означает, что после оплодотворения в еще не дробящемся яйце происходит такое равномерное распределение цитоплазмы, что в дальнейшем клетки зачатков будущих тканей получают ее в определенном закономерном количестве. Человеческая яйцеклетка относится к алецитальным. Это обусловлено тем, что человеческий зародыш очень быстро переходит от гистиотрофного типа питания к гематотрофному. Также человеческая яйцеклетка по распределению желтка является изолецитальной: при ничтожно малом количестве желтка он равномерно располагается в клетке, поэтому ядро оказывается примерно в центре.

Яйцеклетки неподвижны, имеют ядро, цитоплазму, питательный материал (желток).

    изолецитальными (бедными желтком): желток распределен равномерно по цитоплазме. Такие яйцеклетки у млекопитающих (рис. 60, 61);

    телолецитальными - желток находится на одном из полюсов (вегетативном). Эти яйцеклетки характерны для земноводных, рептилий, птиц. Полюс без желтка называют анимальным (рис. 61);

    центролецитальными - желток расположен вокруг ядра. По периферии находится свободная от желтка цитоплазма. Эти яйцеклетки характерны для насекомых.

Наиболее универсальным способом деления соматических клеток, т.е. клеток тела (от греч. soma - тело), является митоз. Этот вид деления клеток был впервые описан немецким гистологом В.Флемингом в 1882г., который наблюдал возникновение и описал поведение нитчатых структур в ядре в период деления. Отсюда происходит и название процесса деления - митоз (от греч. mitos – нить).

При митотическом делении ядро клетки претерпевает ряд строго упорядоченных последовательных изменений с образованием специфических нитчатых структур. В митозе выделяют несколько фаз: профазу, прометафазу, метафазу, анафазу и телофазу (рис. II.2).

Профаза - первая стадия подготовки к делению. В профазе сетчатая структура ядра постепенно превращается в видимые (хромосомные) нити за счет спирализации, укорочения и утолщения хромосом. В этот период можно наблюдать двойную природу хромосом, т.к. каждая хромосома выглядит продольно удвоенной. Эти половинки хромосом (результат редупликации (удвоения) хромосом в 3-фазе), называемые сестринскими хроматинами, удерживаются вместе одним общим участком - центромерой. Начинается расхождение центриолей к полюсам и образование веретена деления (2n4с).

В прометафазе продолжается спирализация хромосомных нитей, происходит исчезновение ядерной оболочки, смешение кариолим-фы и цитоплазмы с образованием миксоплазмы, которая облегчает движение хромосом к экваториальной плоскости клетки (2n4с).

В метафазе все хромосомы располагаются в зоне экватора клетки, образуя так называемую «метафазную пластинку». На стадии метафазы хромосомы имеют самую малую длину, поскольку в это время они наиболее сильно спирализованы и конденсированы. Эта стадия наиболее пригодна для подсчета числа хромосом в клетке, изучения и описания их строения, определения размеров и т.д. Расположение хромосом по отношению друг к другу является случайным.

Веретено деления полностью сформировано, и нити веретена прикрепляются к центромерам хромосом (2n4с). Анафазой называют следующую фазу митоза, когда делятся центромеры хромосом. Нити веретена деления растаскивают сестринские хроматиды, которые с этого момента можно называть дочерними хромосомами, к различным полюсам клетки. Этим обеспечивается согласованное и точное распределение хромосомного материала в дочерние клетки (2n2с).

В телофазе дочерние хромосомы деспирализуются и постепенно утрачивают видимую индивидуальность. Образуется оболочка ядра, начинается симметричное разделение тела клетки с формированием двух независимых клеток (2n2с), каждая из которых вступает в период О, интерфазы. И цикл повторяется снова.

Биологическое значение митоза состоит в следующем.

1. События, происходящие в процессе митоза, приводят к образованию двух ге -

Схема митотического деления клетки

а - интерфаза; 6, в, г, д - различные стадии профазы; е, ж - прометафаза; з, и - метафаза; к - анафаза; л, м ~ телофаза; и - образование двух дочерних клеток нетически идентичных дочерних клеток, каждая из которых содержит точные копии генетического материала пред-ковой (материнской) клетки.

2. Митоз обеспечивает рост и развитие организма в эмбриональном и постэмбриональном периоде. Организм взрослого человека состоит примерно из 1014 клеток, для чего требуется приблизительно 47 циклов клеточного деления единственной оплодотворенной спермием яйцеклетки (зиготы).

3. Митоз является универсальным, эволюционно закрепленным механизмом регенерации, т. е. восстановления утраченных или функционально устаревших клеток организма.

2. Зарисуйте схему наследования признаков родителей.

3. Дайте определение гоносом (половых хромосом), напишите формулу женского и мужского кариотипов.

ПОЛОВЫЕ ХРОМОСОМЫ , специальная пара хромосом в хромосомном наборе раздельнополых организмов; хромосомы содержат гены, направляющие развитие оплодотворённой яйцеклетки в мужскую или в женскую особь. В отличие от всех остальных пар гомологичных хромосом (аутосом), половые хромосомы различаются размерами. У человека и др. млекопитающих, у многих насекомых особи женского пола содержат в хромосомном наборе две большие хромосомы, которые обозначаются как Х-хромосомы, т. е. для женского пола характерен тип ХХ. В клетках особей мужского пола пару с большой Х-хромосомой составляет маленькая хромосома, которую обозначают как Y-хромосома, т. е. для мужского пола характерен тип XY. При образовании половых клеток (гамет) в мейозе у особей женского пола все яйцеклетки получат Х-хромосому и будут равноценными. Такой пол называется гомогаметным (от греч. «гомос» – равный, одинаковый). При образовании гамет особями мужского пола одна половина сперматозоидов получит Х-хромосому, другая Y-хромосому. Такой пол с неравноценными гаметами называется гетерогаметным.

46 ХХ женский кариотип, 46ХУ мужской.

4. Приведите классификацию наследственных болезней Н.П. Бочкова.

В основу классификации наследственных болезней, предложенной академиком Н. П. Бочковым (1984), положен критерий удельного веса наследственности и влияния среды в возникновении, особенностях развития и исходах заболеваний.

С учетом этого критерия выделяют четыре группы заболеваний.

I группа - собственно наследственные болезни (моногенные и хромосомные). Причиной их являются мутации. Проявления мутаций практически не зависят от среды, т.е. есть болезнь или ее нет, зависит только от наличия или отсутствия мутации. К этой группе болезней относятся, например, многие врожденные нарушения обмена: фенилкетонурия, мукополисахаридозы, галактоземия; нарушения синтеза структурных белков: болезнь Марфана, несовершенный остеогенез; наследственные нарушения транспортных белков: гемоглобинопатии, болезнь Вильсона-Коновалова; хромосомные болезни: болезнь Дауна, синдром Шерешевского-Тернера и др.

II группа - наследственные болезни, обусловленные мутацией, действие которой проявляется только при воздействии на организм специфического для мутантного гена фактора внешней среды.

К данной группе относятся такие болезни, как печеночная пор-фирия, некоторые фармакогенетические реакции (длительная остановка дыхания при назначении суксаметония пациентам с вариантом псевдохолинестеразы) и экогенетические болезни (фавизм).

III группа - болезни, возникновение которых в существенной мере определяется факторами среды. Они объединяют большинство широко распространенных заболеваний, особенно болезней зрелого и преклонного возрастов. Наиболее часто и наиболее тяжело заболевания развиваются у предрасположенных к ним индивидуумов. Примерами болезней этой группы являются гипертоническая болезнь, онкологические болезни, психические болезни. Между II и III группами нет резкой границы, и их часто объединяют в группу болезней с наследственной предрасположенностью, различая монотонно или полигенно детерминированную предрасположенность.

IV группа - болезни, вызываемые исключительно факторами внешней среды (травмы, ожоги, отморожения, особо опасные инфекции и т.д.). Но и при этих заболеваниях генетические факторы определяют особенности клинического течения, эффективность терапии, спектр возникающих осложнений, скорость выздоровления, объемы компенсаторных реакций, исходы заболевания и т.д.

5. Охарактеризуйте классификацию, основанную на различиях первичного патогенетического механизма возникновения наследственных заболеваний.

Другая широко используемая классификация основана на различиях первичного патогенетического механизма возникновения наследственных заболеваний.

С этих позиций всю наследственную патологию можно разделить на пять групп:

1) генные болезни. К этой группе относятся заболевания, вызываемые генными мутациями. Они передаются из поколения в поколение и наследуются по законам Менделя;

2) хромосомные болезни. Это заболевания, возникающие в результате хромосомных и геномных мутаций;

3) болезни, обусловленные наследственной предрасположенностью (мулыифакториалъные болезни). Это заболевания, возникающие в результате соответствующей генетической конституции и наличия определенных факторов внешней среды. При воздействии средовых факторов реализуется наследственная предрасположенность;

4) генетические болезни, возникающие в результате мутаций в соматических клетках (генетические соматические болезни), группа выделена совсем недавно. К ней относятся некоторые опухоли, отдельные пороки развития, аутоиммунные заболевания;

5) болезни генетической несовместимости матери и плода. Развиваются в результате иммунологической реакции организма матери на антиген плода.

Деление соматической клетки и ее ядра (митоз) сопровождается сложными многофазными трансформациями хромосом: 1) в процессе митоза происходит удвоение каждой хромосомы на основе комплементарной репликации молекулы ДНК с образованием двух сестринских нитевидных копий (хроматид), соединенных в области центромеры; 2) в последующем сестринские хроматиды разъединяются и эквивалентно распределяются по ядрам дочерних клеток.

В результате в делящихся соматических клетках поддерживается идентичность хромосомного набора и генеетического материала. Отдельно следует сказать о нейронах - высокодифференцированньгх постмитотических клетках, не претерпевающих клеточных делений на протяжении жизни. Компенсаторные возможности нейронов в ответ на действие повреждающих факторов ограничиваются внутриклеточной регенерацией и репарацией ДНК в неделящемся ядре, чем в значительной степени обусловлена специфика нейропатологических процессов наследственной и ненаследственной природы.

Совершенно иной тип деления - мейоз - характерен для половых клехок. Главной особенностью мейозa являются два последовательных деления клетки-предшественника и ее ядра, в то время как хромосомы удваиваются лишь однажды. Схематично механизм мейоза выглядит следующим образом: 1) в первом делении мейоза дочерние клетки получают из каждой хромосомной пары по одной гомологичной хромосоме, состоящей из удвоенных сестринских хроматид (поскольку при этом число хромосом в дочерних клетках уменьшается вдвое, данное деление является редукционным); во втором делении сестринские хроматиды разъединяются и эквивалентно расходятся по образующимся зрелым половым клеткам - гаметам. В результате число хромосом в гаметах оказывается вдвое меньшим по сравнению с исходной родительской клеткой.

После слияния ядер половых клеток при оплодотворении зигота получает стандартный двойной набор хромосом. Данный: механизм обеспечивает постоянство числа хромосом у разных поколений организмов, размножающихся половым путем.

Важнейшей биологической ролью мейоза является обеспечение генетического разнообразия особей в результате «перемешивания» отцовских и материнских генов в гамете. Это достигается двумя путями. Во-первых, в первом делении мейоза распределение отцовских и материнских хромосом по дочерним клеткам происходит случайным образом, в результате чего гаметы несут различные комбинации родительских хромосом.

Второй фундаментальный механизм поддержания генетического разнообразия заслуживает того, чтобы быть разобранным более подробно, поскольку он имеет прямое отношение к теме настоящей монографии -ДНК-диагностике.

В начальной фазе первого деления мейоза гомологичные хромосомы располагаются друг напротив друга и спариваются, образуя одну или несколько зон контакта (хиазм) между отдельными несестринскими хроматидами. Далее пара хроматид, образовавшая хиазму, обменивается участками ДНК - процесс, носящий, название кроссинговер. В результате кроссинговера образуются рекомбинантные хромосомы, состоящие из участков, имеющих происхождение от разных родительских линий. По завершении мейоза рекомбинантные хромосомы разойдутся по разным гаметам.

Таким образом, кроссинговер представляет собой частный случай генетической рекомбинации - процесса перераспределения генетического материала родителей при передаче потомству. Важным следствием кроссинговера становится создание новой комбинации генов у потомков при соединении родительских гамет. Поскольку при рекомбинации происходит обмен генетического материала между отцовской и материнской хромосомами, этот феномен всегда должен приниматься во внимание при анализе наследования хромосом в процессе нроведения косвенной ДНК-диагностики и расчете генетического сцепления.

Клеточный цикл – период жизни клетки от момента ее образования путем деления материнской до собственного деления.

Способы деления соматических клеток:

1) деление надвое, или бинарное;

2) амитоз – прямое деление;

3) митоз – непрямое деление;

4) мейоз – редукционное деление.

Деление надвое, или бинарное характерно для клеток прокариот (бактерий), в которых имеется нуклеоид – генетический аппарат бактериальной клетки (бактериальная хромосома). Представляет собой кольцевидную молекулу ДНК, не соединенную с гистонами. Нуклеоид обычно находится в центре клетки и не отграничен своей мембраной от содержимого клетки. Деление нуклеоида происходит после завершения репликации ДНК. Расхождение дочерних ДНК обеспечивается ростом клеточной мембраны. Перед делением клетки ДНК удваивается, и образуются 2 кольцевые молекулы ДНК. Затем клеточная мембрана врастает в цитоплазму, встраивается между 2 молекулами ДНК и делит клетку надвое.

Амитоз – прямое деление интерфазного ядра клетки путем перетяжки, при котором не происходит образование веретена деления. При амитозе ядро делится, а цитоплазма может оставаться неразделенной. В этом случае хромосомы распределяются неравномерно. Путем амитоза делятся клетки, в которых протекают патологические процессы, например, клетки злокачественных опухолей. У человека и животных амитотически делятся клетки печени, хрящевой ткани, роговицы глаза. У растений амитотически делятся клетки эндосперма. Признаки, характеризующие амитоз:

1) деление ядра может происходить без деления цитоплазмы;

2) встречается он в специализированных клетках (в клетках хрящевой ткани, роговицы глаза);

3) клетка, в которой произошел амитоз, не способна к митозу.

Митоз – основной тип деления эукариотических клеток.

Митоз – это непрямое деление соматических клеток эукариотических организмов, при котором дочерние ядра несут такое же число хромосом, что и родительская клетка. Митоз обеспечивает увеличение числа клеток в организме, рост, процессы регенерации.В 1874 г. И.Д. Чистяков описал некоторые фазы митоза у спор плауна и хвоща. Затем детально исследовали митоз немецкий ботаник, Э. Страсбургер (1876–1879 гг.) – в клетках растений и немецкий цитолог, В. Флемминг (1882 г.) – в клетках животных.

Митотический цикл – совокупность процессов, происходящих в клетке при подготовке ее к делению и в период ее деления.

Митотический цикл подразделяется на интерфазу и митоз (рис. 26). Интерфаза – промежуток времени между делениями клетки. Интерфаза в свою очередь подразделяется на три фазы – G 1 , S, G 2 .

В постмитотическом (пресинтетическом) периоде – фаза G 1 идет подготовка клетки к удвоению ДНК: интенсивный рост клетки; активный биосинтез РНК, белков, липидов, углеводов, АТФ и ферментов.

В синтетическом периоде – фаза S , длительность которого составляет 6–8 часов, осуществляется главный процесс – репликация ДНК (удвоение хромосом). Способ синтеза ДНК – репликация, или самоудвоение молекул ДНК. В ходе репликации происходит передача наследственной информации от материнской ДНК к дочерней ДНК путем точного ее воспроизведения. В результате репликации ДНК каждая хромосома удваивается и состоит из двух хроматид. Хроматиды соединены в центромерной области.

В премитотическом (постсинтетическом) периоде – фаза G 2 , длящемся от 2 до 6 часов, происходит: удвоение органелл; синтез белков, липидов, углеводов, синтез АТФ; синтезируются белки, необходимые для образования микротрубочек веретена деления.

Рис . 26. Схема митотического цикла

В делении животных клеток принимает участие органелла – клеточный центр (центросома). Это немембранная органелла, расположенная около ядра, в цитоплазме клетки. Клеточный центр участвует в формировании веретена деления при воспроизводстве клеток. Хромосомы в интерфазе удвоены, и, вступая в митоз, состоят из двух сестринских хроиматид. Митоз (М) подразделяется на 4 фазы: профазу, метафазу, анафазу и телофазу (рис. 27).

Профаза – стадия митоза, в ходе которой происходит конденсация хромосом, распад ядрышек, начинает формироваться веретено деления. В профазе каждая хромосома состоит из двух хроматид, соединенных между собой в области центромеры. В конце профазы исчезает ядрышко, центриоли расходятся к полюсам клетки. Возникает митотическое веретено, состоящее из микротрубочек.

Метафаза – стадия митоза, при которой хромосомы выстраиваются на экваторе веретена, образуя метафазную пластинку. В начале метафазы разрушается ядерная оболочка. Каждая хромосома прикрепляется своим центральным участком (центромерой) к одной из микротрубочек. Имеется также кинетохор, который находится вблизи центрометы и регулирует расположение и направление движения хромосом. В метафазе хромосомы располагаются в экваториальной области клетки, образуют метафазную пластинку.

Хроматиды хорошо различимы во время метафазы митоза, когда хромосома состоит из двух хроматид.

Анафаза – стадия митоза, характеризующаяся расхождением сестринских хроматид к противоположным полюсам клетки. Это самая короткая стадия митоза. После деления центромеры хроматиды расходятся в дочерние ядра и становятся самостоятельными хромосомами.

Движение хромосом осуществляется благодаря кинетохору и нитям веретена, которые сокращаются и растягивают хроматиды от экватора к полюсам клетки

Телофаза – стадия митоза, характеризующаяся формированием дочерних ядер. У полюсов клетки хромосомы деспирализуются и приобретают форму длинных нитей, что характерно для неделящегося ядра. Формируются дочерние ядра, а в них – ядрышки. В дочерних ядрах образуются ядерная оболочка, нуклеоплазма. На протяжении телофазы происходит цитокинез – деление цитоплазмы, в результате чего две идентичные дочерние клетки отделяются друг от друга. Они являются генетической копией материнской клетки и содержат диплоидный набор хромосом – 2nc.

Рис. 27. Фазы митоза животной клетки: А–В профаза; Г– прометафаза; Д– метафаза; Е– анафаза; Ж– телофаза; З– цитокинез

Биологическое значение митоза . Митоз обеспечивает генетическую преемственность поколений клеток, генетическую стабильность, т. е. видовое постоянство числа хромосом в клетках.

Митотический индекс (m)– отношение числа претерпевающих митоз клеток в ткани к общему числу клеток ткани или культуры. Митотический индекс определяется по формуле m= N m / N, где N m – число претерпевающих митоз клеток в ткани, а N – общее число клеток ткани (1000 клеток). У каждой ткани – свой митотический индекс. Более высокие его показатели характерны для росткового слоя кожи (0,7), верхушечная и боковая меристемы (0,7), эпителия тонкого кишечника (0,78), клеток красного костного мозга (0, 74), а более низкие – для скелетной мышечной ткани (0,0001) и нервной ткани (0,0001).

Мейоз

Мейоз – процесс деления диплоидных клеток половых желез, в ходе, которого наблюдаются редукционное деление, приводящее к уменьшению числа хромосом в дочерних клетках вдвое и уравнительное деление, приводящее к образованию гамет. Мейоз открыт В. Флеммингом в 1882 г. у животных, а Э. Страсбургер в 1888 г. выявил редукцию числа хромосом у растений.

Интерфаза мейоза. В интерфазе происходит удвоение молекул ДНК в синтетическом периоде. При этом удваиваются хромосомы. В каждой хромосоме содержится по 2 хроматиды (2n2c).

1. Первое деление мейоза

Профаза 1 . В профазу 1 вступают хромосомы, удвоенные в интерфазе.

Поэтому в начале профазы хромосомы удвоены (диплоидный набор) и в каждой из них содержится по 2 хроматиды (2n2c). Затем осуществляются процессы (рис. 28) конъюгации и кроссинговера. В профазе-1 различают стадии: лептотена, зиготена, пахитена, диплотена, диакинез.

Конъюгация хромосом – процесс попарного временного сближения гомологичных хромосом. Лептотена – стадия тонких нитей. На стадии зиготены гомологичные хромосомы сближаются попарно и образуют тетрады – структуры из четырех хроматид, или биваленты. Вследствие конъюгации каждый бивалент состоит из 4 сестринских хроматид. Формула генетического материала имеет вид 2n4c.

Кроссинговер – перекрест гомологичных хромосом или хроматид, сопровождающийся обменом соответствующими участками между хроматидами (процессом рекомбинации). На стадии пахитены в бивалентах происходит кроссинговер: взаимный обмен идентичными участками по длине гомологичных хромосом, формируются хиазмы – места перекреста хромосом. Поскольку каждая хиазма соответствует одному событию кроссинговера, в котором участвуют две несестринские хроматиды, то по количеству хиазм можно судить об интенсивности процесса кроссинговера. В хромосомном наборе человека число хиазм колеблется от 35 до 66. Возможен обмен участками между несестринскими хроматидами соседних хромосом – (несестринский обмен) или между сестринскими хроматидами – в пределах одной хромосомы (сестринский обмен).

Генетическим следствием кроссинговера является рекомбинация генов, образуется генетически неоднородный материал, возникают генетические различия между хроматидами, что обеспечивает широкую генетическую изменчивость гамет. На стадии диплотены тетрадный комплекс разрушается. Гомологи отталкиваются друг от друга. Диакинез – стадия завершающая профазу мейоза-1, переходная к метафазе-1. Биваленты укорачиваются, разрушается ядро, начинает формироваться веретено деления.

Метафаза 1 . Биваленты, уже генетически неоднородные, располагаются в 2 слоя по экватору клетки.

Анафаза 1 . В анафазе к полюсам расходятся хромосомы, состоящие из 2 хроматид, т. е. расходятся половинки бивалентов. Этот процесс называется редукционное деление , в результате которого образуются две клетки, в которых содержится по одной хромосоме, но каждая хромосома состоит из двух хроматид. Формируется гаплоидный набор хромосом. Поэтому формула генетического материала в анафазе-1 имеет вид – n2c).

Телофаза 1 . Образуются 2 клетки с гаплоидным набором хромосом и удвоенным количеством ДНК. Веретено деления разрушается. Появляется ядерная оболочка. В конце телофазы 1 происходит цитокинез (деление цитоплазмы с помощью перетяжки), кроме того, формируются диады, т.е. в каждую клетку попадают 2 сестринские хроматиды, соединенные центромерой.

Итак, уже после первого мейотического деления в клетке содержится гаплоидный набор хромосом, и каждая хромосома состоит из двух хроматид.

2. Второе деление мейоза – уравнительное деление (митоз мейоза) . Между первым и вторым делениями мейоза присутствует период – интеркинез . В отличие от интерфазы в интеркинезе не реплицируется ДНК, и удвоение хромосом не происходит.

Второе деление мейоза включает такие же фазы, что и первое деление –профазу-2, метафазу-2, анафазу-2, телофазу-2.

В профазе-2 и метафазе-2 мейоза еще сохраняются по две хроматиды в каждой хромосоме. В профазе II мейоза хромосомный набор клетки можно записать в виде формулы 1 n 2 c (n – число хромосом, c – число хроматид).

В анафазе-2 сестринские хроматиды расходятся к полюсам клетки, и каждая из них становится самостоятельной хромосомой. В результате расхождения хроматид к полюсам клетки происходит уравнительное деление .

В телофазе -2 формула генетического материала имеет вид n c.

Рис . 28 . Стадии мейоза. Поведение хромосом. Отцовские хромосомы окрашены в черный цвет, материнские – в белый.

Таким образом, мейоз состоит из двух последовательных делений (редукционного и уравнительного). Перед первым делением мейоза, в интерфазе, происходит синтез ДНК, вследствие чего, в каждой хромосоме будет по две хроматиды (однократная репликация ДНК – 2n2c). Редукционное деление заканчивается образованием двух клеток, содержащих гаплоидный набор хромосом, состоящих их двух хроматид (1n2c). Перед вторым делением в мейозе отсутствует интерфаза. Поэтому второму делению не предшествует синтез ДНК и удвоение хромосом. В результате уравнительного деления (митоза мейоза) из одной исходной диплоидной клетки половой железы образуются 4 гаплоидные генетически разнородные клетки. После уравнительного деления формула генетического материала имеет вид – 1n1c.

Биологическое значение мейоза состоит: 1) в формировании генетически разнообразного материала, вследствие кроссинговера; 2) в разнообразии видов, т. к. мейоз служит основой комбинативной изменчивости организмов; 3) в формировании гамет, участвующих в половом размножении; 4) в поддержании генетического постоянства видов.